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Like other longitudinal large-scale assessments in education (LSAE), the National Edu-
cation Panel Study, or NEPS (Blossfeld et al., 2011), needs to address different method-
ological challenges to ensure the integrity of the data — such as the implementation of
fair measurements across time and respondents, along with the construction of com-
mon metrics, as well as strategies to control for item and unit nonresponse (e.g., Pohl &
Carstensen, 2013; von Maurice et al., 2017). Next to the complexity and sheer size of the
database, further challenges arise for valid results in subsequent research, for instance,
how to accurately model the relationships of different constructs and different time
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points, along with corrections for measurement error, and the selection of relevant back-
ground information (e.g., Rutkowski et al., 2010).

Current methodological innovations for longitudinal LSAE address strategies for mod-
eling longitudinal data with respect to different subsequent research questions. In addi-
tion, methodological research evaluates the performance of different analysis strategies
in simulation studies and facilitates the implementation of methodological innovations.
The aim of this special issue is to contribute to the advancement of methodological prac-
tices in longitudinal LSAEs. This special issue includes seven studies that make impor-
tant contributions in this regard.

Longitudinal NEPS Data

As a national LSAE, the NEPS collects valuable data on education quality and perfor-
mance development within the German system, similar to LSAE in other countries.
Examples of such studies include the U.S. Early Childhood Longitudinal Studies Pro-
gram (ECLS; National Center for Education Statistics [NCES], 2018) and the Austra-
lian National Assessment Program—Literacy and Numeracy (NAPLAN, Australian
Curriculum, Assessment and Reporting Authority, 2023). International LSAE allow for
comparisons across education systems, such as the Program for International Student
Assessment (PISA, Organization for Economic Cooperation and Development [OECD],
2022), the Progress in International Reading Literacy Study (PIRLS, von Davier et al.,
2022), and the Trends in International Mathematics and Science Study (TIMSS, Martin
et al., 2020). Despite different orientations, the LSAE share common topics and stan-
dards for the assessments (e.g., Cresswell et al., 2015; Herndndez-Torrano & Courtney,
2021).

Using a multicohort sequence design, the NEPS considers educational outcomes,
processes, and decisions spanning from early childhood education in kindergarten
and school, to vocational training, university studies and even after leaving the educa-
tion system (e.g., Blossfeld & Rofibach, 2019). This comprehensive approach currently
encompasses seven distinct cohort samples, including newborns, kindergarten children,
secondary school children in 5th grade (2010 and 2022) and 9th grade, first-year under-
graduate students, and adults. The surveys include competence tests and interviews
with target persons and — at least for the younger cohorts — also interviews with parents
and educators (see also NEPS Data Portfolio). Accordingly, extensive background data
is available from different measurement occasions, next to comprehensive assessments
of educationally relevant, domain-specific functional competencies (i.e., reading com-
petence, listening comprehension, mathematical competence, scientific and information
and communication technology literacy). A coherent and comparable assessment of the
competencies across the different age and respondent groups in education (e.g., school
types, status groups, educational careers and occupations) requires considerable effort
for the construction of the test instruments as well as in the analysis of such data (e.g.,
Artelt et al., 2013).
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About this special issue

In longitudinal LSAE, methodological innovations aim at improving and evaluating the
analytical routines and the approaches for subsequent substantive research addressing,
for instance, group comparisons, prediction of future achievement, as well as inferring
development and trends over time. Longitudinal data includes different methodologi-
cal challenges such as measurement error and non-ignorable missing data, that can
potentially bias research results. Strategies for adjusting for bias include incorporating
available background information in the analysis, such as estimation of plausible values
(PV) which is a special case of multiple imputation (e.g., Rubin, 1987). Furthermore, the
specification of the temporal order is central in the longitudinal data analysis for accu-
rately representing the theoretical processes of interest. This can be achieved through
the consideration of discrete time intervals (e.g., Voelkle et al., 2018) or application of
continuous-time dynamic models (e.g., van Montfort et al., 2018) offering insights into
developmental trends over time. In addition to bias corrections and the correct represen-
tation of temporal processes, efficient and user-friendly strategies for analyzing extensive
data are required. Sophisticated estimation strategies, like Bayesian approaches (e.g., van
der Schoot et al,, 2021) and automated analysis routines, for instance those available in
the open-source software R (R Core Team, 2024), can help to combine various informa-
tion sources and support the implementation of complex modeling strategies in practice.

This special issue presents seven studies contributing to the advancement of the meth-
odological practices in LSAE. The studies use diverse methodological approaches and
cover a range of topics, such as the incorporation of historical information within a
Bayesian framework, the role of item selection in linking methods, the estimation of PV
with customized background models, and the appropriate statistical modeling of lon-
gitudinal data. Multiple contributions conducted simulation studies for evaluating the
performance of statistical methods under controlled conditions where the true results
are known. Yet, the generated data in simulations typically does not match the complex-
ity of empirical data. For this, illustration studies and tutorials are provided to showcase
how the methods or software developments can be implemented in practice and what
are the practical benefits or limitations. In addition, the applications of innovative meth-
ods in empirical studies with specific substantive research questions illustrate how to
interpret the results and drawn substantive conclusions. The robustness of these con-
clusions in relation to the used methods is also a central question and provides insights
for explaining the heterogeneity of empirical results (e.g., Nosek et al., 2022). Accord-
ingly, we specified the type of the studies in this special issue and provide an overview in
Table 1. The central aims of the seven studies can be summarized as follows.

The study conducted by Kaplan et al. (2023) investigates the potential benefits of
incorporating information from previous cycles of longitudinal data within the Bayesian
framework. The primary objective has been to assess the advantages of historical bor-
rowing methods in estimating growth rates and predictive performance for the current
cycle. The research systematically evaluates five different historical borrowing methods:
three static approaches (complete pooling, Bayesian synthesis with aggregated data-
dependent priors, and traditional power priors) and two dynamic methods (Bayesian
dynamic borrowing and commensurate priors). The authors utilize data from two kin-
dergarten cohorts of the U.S. ECLS, specifically the 2010-2011 and 1998-1999 cohorts,
to scrutinize whether the inclusion of growth rate information from the 1998-1999
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cohort can enhance the accuracy of estimating the growth rate in reading literacy for the
2010-2011 cohort, when employing a Bayesian multilevel growth curve model. Addi-
tionally, a simulation study has been conducted to assess the performance of Bayesian
historical borrowing methods under various conditions, including different sample sizes
and degrees of data heterogeneity (such as the similarity or dissimilarity between two
cycles of data). The study’s findings indicate that, in a single historical cycle, most meth-
ods performed similarly, except for pooling and power priors, which showed relatively
poor performance under heterogeneous conditions. Based on previous research, the
authors emphasize the efficacy of dynamic borrowing methods in leveraging informa-
tion from previous cycles of longitudinal data. Therefore, it is recommended to use such
methods when analyzing multiple cycles of longitudinal data to account for heterogene-
ity arising from cohort effects and changes in data collection strategies.

Robitzsch and Ludtke (2023) investigate various approaches for estimating trends in
International Large-Scale Assessments (ILSAs), specifically focusing on country means
and standard deviations. The approaches distinguish three key factors: (1) the method
of linking a country’s performance to an international metric (indirect vs. direct), (2) the
use of all items (both unique and common items) or only link items for linking, and (3)
the assumption of item parameters as invariant (international item parameters), result-
ing from the concurrent scaling model, or noninvariant across countries (country-spe-
cific item parameters), resulting from the separate scaling model. The paper establishes
that original trends and marginal trends correspond to indirect and direct linking
approaches, respectively. The indirect linking approach estimates the trend for assessing
a country’s change between two measurement occasions by linking the country to the
international metric at each measurement occasion (referred to as original trend esti-
mates). Conversely, the direct linking approach links a specific country to the interna-
tional metric only at the first measurement occasion and directly assesses the change
in the country’s mean or standard deviation (referred to as marginal trend estimates).
Using simulation and analytical derivations, the authors demonstrate that direct link-
ing and the use of link items outperformed alternative approaches, particularly when
differential item functioning (DIF) was present. In the empirical application, trends in
reading, mathematics, and science between two measurement occasions, PISA 2006 and
PISA 2009, were evaluated. The results confirmed the efficacy of direct linking and the
importance of link item selection for trend estimation, providing more accurate trend
estimates and smaller linking errors in educational assessments compared to other
approaches. Additionally, the study found that the choice of trend estimation methods
had a greater impact on country standard deviations than on country means. Therefore,
this work underscores the significance of careful methodological considerations when
assessing trends in educational outcomes across different countries.

Heine and Robitzsch (2022) conduct a systematic examination of the impact of ana-
lytical decisions on cross-sectional and trend estimates in international large-scale edu-
cational assessments. The study focuses on the mathematical domain of the Programme
for International Student Assessment (PISA) data from 2003 to 2012 and considers four
crucial methodological factors: (1) the choice between concurrent or separate item
calibration, (2) the selection of the calibration sample, for example, such as including
either all participating countries or only OECD countries, (3) the inclusion of all items
or only common items, and (4) the use of either the maximum likelihood estimator or
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the least square estimator for item calibration, as implemented in the R packages TAM
(Robitzsch et al., 2024) and pairwise (Heine, 2023), respectively. The study reanalyzed
32 analytical scenarios and compared the results to those in the official OECD report.
The findings underscore the substantial impact of analytical choices on country mean
estimates and the amount of method variance. This impact results in wider confidence
intervals of the countries’ means compared to the official reports. The researchers find
that item selection, both individually and in interaction with country, has a substantial
impact on cross-sectional and trend estimates. They conclude that the analytical choices
made during item calibration could introduce an additional source of method variance,
which could potentially affect the ranking of countries in terms of their mathematical
proficiency. To accurately interpret PISA rankings, it is crucial to consider the analytical
options chosen and avoid overinterpreting small mean differences between countries.

Scharl and Zink (2022) introduce NEPSscaling, an R package that streamlines the esti-
mation of plausible values (PVs) for competence tests within the National Educational
Panel Study (NEPS). The resulting PVs can be utilized by NEPS data users to investigate
population effects relevant to their research questions. NEPSscaling automates the PV
estimation process, allowing users to concentrate on preparing background data spe-
cific to their research inquiries. PVs are estimated by following the scaling standards in
NEPS and using an appropriate item response model. Missing values in the background
data are handled using a nested multiple imputation scheme based on a classification
and regression trees (CART) algorithm. The NESPscaling package provides a graphical
user interface that simplifies the PV estimation process, making it accessible to research-
ers with minimal psychometric expertise and novice R users. The estimated PVs can be
exported to statistical software, such as SPSS or Stata, for further analysis. These features
enhance the accessibility of NEPSscaling to a wider audience. The package can estimate
cross-sectional and longitudinally linked PVs for various competence assessments across
NEPS cohorts, as demonstrated in the paper in two illustrated applications using R code
and a graphical interface. The authors concluded that NEPSscaling is a valuable tool for
NEPS data users, offering a simple and reliable method for automatic PV estimation.
Compatible with a variety of statistical software and featuring a user-friendly design,
NEPSscaling proves to be an invaluable resource for researchers conducting population-
level analyses within the NEPS framework.

Lohmann et al. (2022) propose a continuous-time latent curve model with structured
residuals (CT-LCM-SR) to address continuous development over time, considering
both the dynamic process and trends in the data. The practical implementation of the
CT-LCM-SR and its ability to separately estimate the trend and dynamic processes are
demonstrated through an illustrative application using PISA reading literacy assessment
data. The case study examined two main questions. (1) It analyzes the trends in mean
PISA reading literacy scores from 2000 to 2018, revealing an overall increase with sig-
nificant variations among countries in both slope and direction. (2) The authors exam-
ine the stability of education systems and identified a continuous-time dynamic process
of fluctuations around trends. They found that temporary deviations tend to dissipate
after approximately five years, as indicated by derived discrete-time autoregressive
effects. The authors of the study conclude that the CT-LCM-SR produces parameters
that are independent of specific time intervals and represents developmental processes
on a continuous-time scale. The paper provides a tutorial and R code for specifying the
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CT-LCM-SR model using the R package ctsem (Driver & Voelkle, 2018), along with an
illustration of its application and interpretation. This tool is useful for modeling both
trends and dynamic processes in educational research.

Jindra et al. (2022) examines the relationship between reading and mathematics lit-
eracy in children aged 10 to 19 using a continuous-time modeling approach. This inno-
vative method enables the identification of peak effects and allows for the examination
of the dynamics of these competence domains over time. The researchers utilize data
from a large representative sample of German students in Starting Cohort 3 of the
National Educational Panel Study (NEPS-SC3). The findings suggest that reading has a
stronger impact on mathematics, indicating that mathematics literacy is a more persis-
tent construct. Additionally, standardized cross-lagged effects peaked at approximately
a six-month interval. These findings imply that interventions aimed at enhancing read-
ing literacy could have a greater positive impact on mathematics literacy, as observed
for mathematics. However, interventions targeting one domain may not yield enduring
effects on the other. The authors emphasized the importance of using continuous-time
models to capture the complex dynamics of educational constructs and identify peak
effects.

Sciffer et al. (2022) address gaps in accurately assessing the effect of socioeconomic
school composition on student achievement growth in Australian primary and second-
ary schools. The research also aims to clarify the relationships between socioeconomic
school composition and academic composition using the dataset of the National Assess-
ment Program — Literacy and Numeracy (NAPLAN) administered in 2017. Socioeco-
nomic school composition is defined as the average socioeconomic status of a school,
determined by parental educational and occupational status. The effects of socioeco-
nomic school composition have been measured as the difference in academic achieve-
ment between students who have the same individual socioeconomic status but attend
schools with different socioeconomic school compositions. Methodological concerns
were raised regarding potential measurement errors in assessing the effects of socio-
economic school composition. To address this issue, the study compares two statistical
approaches concerning their sensitivity in assessing measurement errors in indicators
of socioeconomic status: multilevel residual-change regressions using composite mea-
sures provided by means of principal component analysis and multilevel residual-change
structural equation models where composite measures are modelled as latent factors.
The findings indicate that measurement error does not bias compositional effects in the
dataset, providing confidence of using principal component analysis to develop reliable
composite measures. Furthermore, the study utilizes multilevel path models to inves-
tigate whether academic composition acts as a mediator in the relationship between
socioeconomic composition and achievement growth. Academic composition refers
to a school’s average prior achievement in academic domains, such as reading, writing,
spelling, grammar, punctuation, and numeracy. The study finds that academic composi-
tion mediated the relationship between socioeconomic school composition and achieve-
ment growth. Noteworthy variations in achievement growth between schools with low
and middle socioeconomic composition in Australia are highlighted, emphasizing the
substantial impact of socioeconomic school composition on student achievement. The
researchers conclude that educational reforms addressing both the academic and socio-
economic composition of schools are more likely to succeed. However, on reanalyzing
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the data, Marks (2024) reported that the effects of socioeconomic status are rather
minor when accounting for student-level prior achievement, with academic composition
being a more relevant predictor of student achievement.

Conclusion

In conclusion, this special issue contributes significantly to advancing methodologi-
cal practices in longitudinal LSAE by presenting eight studies that develop and employ
diverse methodological approaches. The presented studies offer valuable insights into a
variety of topics, including estimation accuracy using Bayesian strategies that incorpo-
rate information from previous time-points, the choice of trend estimation methods for
fair country comparisons, plausible value estimation to account for measurement error,
continuous-time models of longitudinal data, and compositional effects when investi-
gating achievement growth. Through the use of simulation studies, illustration studies,
tutorials, and the development of software, the contributions enrich the available model-
ing approaches for longitudinal LSAE, demonstrating their implementation and inter-
pretation in practice.
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