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Abstract 

Two new methods for the meta-analysis of factor loadings are introduced and evaluated by 

Monte Carlo simulations. The direct method pools each factor loading individually, 

whereas the indirect method synthesizes correlation matrices reproduced from factor 

loadings. The results of two simulations demonstrated that the accuracy of meta-analytical 

derived factor loadings is primarily affected by characteristics of the pooled factor 

structures (e.g., model error, communality) and to a lesser degree by the sample size of the 

primary studies and the number of included samples. The choice of the meta-analytical 

method had a minor impact. In general, the indirect method produced somewhat less biased 

estimates, particularly for small-sample studies. Thus, the indirect method presents a viable 

alternative for the meta-analysis of factor structures that could also address moderator 

hypotheses. 
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Parameter Accuracy in Meta-Analyses of Factor Structures 

Psychometric examinations of measurement instruments using meta-analytical 

methods primarily focus on issues of reliability (e.g., Gnambs, 2014, 2015; Kasten and 

Freund, 2015) or selected aspects of criterion validity (e.g., Salgado and Táuriz,, 2014; Van 

Iddekinge et al., 2012); matters of factorial validity are rarely addressed (e.g., Worley et al., 

2008). The latter is typically impeded by a lack of appropriate meta-analytic methods for 

the pooling of published factor loading matrices. Although questions on the factorial 

configuration of a given instrument can be readily addressed (see Shafer, 2005, 2006) there 

is no broadly applicable technique for the examination of the magnitude of loadings. 

Therefore, the present study addresses this lacuna and introduces two meta-analytic 

techniques to achieve the latter objective. In two Monte Carlo simulations the two 

approaches are evaluated with regard to the accuracy of the pooled factor loadings. 

The Common Factor Model 

In common factor theory the observed covariation between a set of p manifest 

variables is assumed to be explained by a smaller set of q unobserved common factors. The 

common factor model can be expressed as follows:  

 2   P Λ Λ  [1] 

where  is a p x p population correlation matrix, Λ is a p x q factor loadings matrix1 

for q common factors, Φ is a q x q matrix of common factor correlations, and Θ2 is the p x 

p diagonal matrix of squared unique factor loadings, that is, the part of each manifest 

variable unaccounted for by the common factors. The goal of exploratory factor analysis 
                                                 

1 The terms loading matrix and pattern matrix will be used interchangeably throughout the paper. 
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(EFA) is the identification of the number of common factors and the nature of their 

relationship with the manifest variables. Thus, EFA tries to estimate Λ given a sample 

correlation matrix R. More precisely, EFA tries to answer two questions (cf. Meredith, 

1993): First, EFA aims at identifying an appropriate loading configuration for Λ that 

adequately represents the covariation between the p manifest variables. This includes 

determining the optimal number of common factors q and according to the simple structure 

criterion for each manifest variable the common factor with the strongest loading. Second, 

the metric goal of EFA is to provide accurate estimates of the factor loadings in Λ. 

However, a pervasive problem of EFA is that factor analyses of different sample 

correlations matrices Ri (i = 1, …, k samples) will rarely identify identical factor pattern 

matrices Li, even if the same factor model Λ holds in the population. Sampling error 

typically distorts the Li and, thus, leads to biased estimates of Λ for different samples (see 

MacCallum and Tucker, 1991, for an in-depth discussion of sampling error in EFA). As a 

potential solution to this problem it has been suggested to identify the true common factor 

model for a set of manifest variables using meta-analytic methods (e.g., Becker, 1996; 

Kaiser et al., 1971; Shafer, 2005, 2006). 

Meta-Analytic Approaches for Factor Structures 

So far, there are three major avenues for the meta-analytical examination of factor 

structures: The first approach involves pairwise comparisons of the k sample pattern 

matrices Li that have been accrued from primary studies (Bushman et al., 1991). After 

rotation to maximal similarity the loading matrices are compared using the coefficient of 

congruence (Tucker, 1951). A strength of this approach is the sole reliance on data typically 

reported for EFAs in published research articles which, thus, are likely to be available for 
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meta-analytic integration. However, this advantage is typically outweighed by a major 

limitation: The approach only provides pairwise comparisons between factor loadings 

patterns and no overall index of similarity. Moreover, it does not provide an estimate of Λ 

but only a form of fit index reflecting the heterogeneity of results. The second approach is a 

form of a count technique introduced by Shafer (2005, 2006) which involves counting the 

number of times two manifest variables exhibited their strongest loading on the same 

common factor across all k samples. Using these co-occurrences the factor configuration of 

Λ is determined. An advantage of Shafer’s method is the use of loading structures from 

EFAs that are typically reported in primary studies. However, a weakness is that it is 

limited to the examination of the loading configuration (i.e. to determine which items load 

on the same or different factors); but it does not acknowledge the magnitude of the reported 

factor loadings. The third approach adopts a two-step strategy: Correlations between items 

of a scale are aggregated using conventional uni- or multivariate meta-analytical 

techniques. Subsequently, the pooled correlation matrix is analyzed using common 

exploratory or confirmatory factor analytical methods (cf. Becker, 1996; Cheung, 2014; 

Cheung and Chan, 2005). Although this approach can address configural as well as metric 

aspects in EFA, it is seldom used in practice. Except for some rare cases (see for example, 

Gnambs, 2013) item-level correlation matrices are not typically reported in primary studies 

and, thus, the meta-analysis of the sample correlation matrices does not represent a widely 

applicable option for the examination of factor structures. 

Proposals for Alternative Meta-Analytic Approaches 

Although factor configurations can be examined with existing meta-analytic 

techniques (Shafer, 2005, 2006), there is no broadly applicable method for the analyses of 
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metric information, that is, the magnitude of the loading pattern. Therefore, two avenues 

are introduced that could be used to address the latter issue (the major steps involved in 

these methods are also briefly summarized in step 4 of Table 1): 

The first approach (direct method) refers to the pooling of the reported factor 

loading matrices. Since in EFA an infinite number of rotated solutions explain the data 

equally well, the factor pattern matrix is not unique. Hence, before aggregating over the k 

sample factor loadings matrices Li they are first rotated to achieve maximal similarity. 

Because the true population factor model Λ is unknown, it is suggested to rotate all Li 

towards an idealized target structure T specifying 1s for all hypothesized salient loadings 

and 0s for non-salient loadings. Thus, T reflects the hypothesized factor configuration. Of 

course, this assumes that T is derived a priori, typically based on theoretical considerations 

and the results of empirical studies. In case of ambiguous loadings patterns for specific 

items it is also possible to use a partially specified target for T (Browne, 1972). 

Subsequently, the rotated sample factor loadings iL  are pooled into L  as an estimate of Λ. 

The second approach (indirect method) is based on the pooling of the reproduced 

correlation matrices. Following the common factor model the implied (or reproduced) 

correlation matrix R* of a given sample factor pattern matrix L and the respective sample 

factor correlation matrix F is given by 

 * R LFL . [2] 

After aggregating the k reproduced correlation matrices *
iR  the pooled correlation 

matrix *R  is subjected to a conventional exploratory factor analysis that yields L  as an 

estimate of Λ. Thus, the indirect approach can be conceived as an extension of Becker’s 
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(1996) two-step strategy, albeit based on the reproduced instead of the sample correlation 

matrices. Although both approaches achieve the same goal of providing an estimate of Λ 

the indirect approach is more flexible because it does not assume a priori knowledge of a 

specific factor configuration and, thus, could even be used to aggregate loading patterns 

with a different number of factors. Moreover, it could also be extended to the examination 

of competing measurement models (e.g., using confirmatory factor analyses), similar to 

meta-analytic structural equation modelling (MASEM; cf. Cheung, 2014, 2015; Cheung 

and Chan, 2005, 2009). 

Both approaches, the direct and the indirect method, require the pooling of effect 

sizes (either factor loadings or correlations) across multiple samples. This can be achieved 

by adopting univariate techniques that individually pool each of the s unique effects2 or 

multivariate techniques that also acknowledge within-sample dependencies between effects 

(cf. Cheung, 2013). A general framework for univariate and multivariate meta-analyses 

represents the generalized least squares (GLS) technique (Becker, 1992): Let y be the k·s x 

1 column vector of the k stacked s x 1 vectors of the sample’s observed effects sizes for the 

meta-analyses (i.e. factor loadings for the direct method and correlations for the indirect 

method). Then, the GLS estimator for the population effect sizes β is also a s x 1 column 

vector given as 

  
1

1 1

1 1

ˆ
k k

i i i
i i


 

 

     
 
 

-1-1 -1β X V X X V y V V y  [3] 

                                                 

2 In the direct approach s = p·q factor loadings, whereas in the indirect approach s =p·(p-1) / 2 correlations. 
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where X consists of k stacked s x s identity matrices, and V is a k·s x k·s blockwise 

diagonal matrix consisting of each samples s x s variance-covariance matrix of the effect 

sizes arrayed along the diagonal (Becker, 1992; Hafdahl, 2007). Thus, the GLS estimation 

of β corresponds to the calculation of the variance-weighted means of the observed effect 

sizes y (Hedges and Vevea, 1998). In meta-analyses V is assumed to be known. If all off-

diagonal elements in V are set to zero this corresponds to a conventional univariate meta-

analysis for each effect size. In contrast, if dependencies between the effect sizes within a 

sample are acknowledged by calculating the covariances in V (cf. Furlow and Beretvas, 

2005), the model corresponds to a multivariate meta-analysis (Becker, 2002; Cheung, 

2013). 

Interestingly, under a fixed-effects model that assumes homogenous population 

effect sizes across samples the GLS estimator in [3] reduces to 

 
1 1

ˆ
k k

i i i
i i

n n
 

 β y  [4] 

where ni is the size of the ith sample (Hafdahl, 2007). Thus, in the fixed-effects case 

within-study dependencies between effect sizes do not affect the estimation of the 

population effect and the GLS estimator for β is simply the sample-size weighted mean of 

effects. Therefore, for the direct method the pooled factor loadings can be estimated as 

sample-size weighted mean loadings across the k samples and for the indirect method the 

pooled correlation matrices are derived as sample-size weighted mean correlations. 

Random-effects model would require estimates of the variance-covariance matrix 

V; that is, the sampling variances of the reported factor loadings for the direct method or 

the sampling variances of the reproduced correlations for the indirect method. However, 
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analytical solutions for the calculation of these values based on reported factor loadings 

alone are not available. Therefore, a potential approximation for V would be the use of 

respective formulas developed for correlation coefficients (see Hedges, 1983; Olkin and 

Finn, 1996). But in practice accurate estimation of V might be unnecessary because it does 

not improve the pooled estimates. Simulation studies indicate that sample-size weights 

result in less biased estimates of correlation coefficients than inverse variance weights 

(Brannick et al., 2011). Moreover, taking the covariances in V into account does not 

improve point-estimates of the pooled correlations and subsequent structural models 

(Prevost et al., 2007). Therefore, given the complexities involved in estimating V and the 

uncertain advantages the present study will focus on the fixed-effects case. 

Comparison of Approaches 

The two proposed meta-analytic methods have several advantages as compared to 

available techniques (see Table 2). In contrast to MASEM, the direct and indirect method 

put less demands on the primary studies because they only require information on the factor 

loadings instead of the item-level correlations. While the latter are rarely reported in 

primary studies, the former are routinely presented in EFA studies. Thus, for meta-analyses 

adopting one of the new approaches it is likely that a larger number of effects would be 

available, thus, potentially increasing the precision of the pooled estimates. With regard to 

the research questions that can be addressed, the direct and the indirect method show two 

central differences. First, metric issues (i.e. concerning the magnitude of factor loadings) 

can be similarly examined using the direct and the indirect method. In contrast, the analyses 

of configural questions (i.e. regarding the appropriate number of underlying factors) are 

limited to the indirect method. Second, in the context of the direct method moderator 
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hypotheses can only be addressed for each factor loading separately using, for example, 

traditional meta-regressive techniques (see Viechtbauer et al., 2014, for an overview). In 

contrast, moderators in the indirect approach could either focus on individual factor 

loadings by examining gradients of factor loadings (Gnambs, 2013) or examine moderator 

effects for the entire factor structure within the established framework of multi-group 

invariance testing (Davidov et al., 2014). Thus, in many ways the indirect method is similar 

to MASEM and permits addressing similar research objectives (see Table 2). However, the 

use of factor loadings (instead of item-level correlations) as raw data extracted from the 

primary studies makes the indirect method potentially a better choice for factor analytic 

studies. 

Hypotheses for the Present Studies 

Before adopting the direct or the indirect method for the meta-analysis of factor 

structures their performance with regard to established meta-analytic techniques needs to be 

demonstrated. Therefore, this study examined the accuracy of the pooled factor loadings 

derived from the direct and indirect method in relation to Becker’s (1996) two-step strategy 

that assumes availability of the item-level correlation matrices. In particular, the study 

focuses on the magnitude of the factor loadings and potential differences in loading biases 

between the three meta-analytic methods. Moreover, the study examined several specific 

hypotheses with respect to variables that might affect the accuracy of L  as an estimate of 

Λ. 

Hypothesis 1: Typically, sampling error distorts estimates of factor loadings in 

EFA. Several studies demonstrated that the influence of sampling error can be reduced by 
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increasing the sample size in EFA (e.g., Guadagnoli and Velicier, 1989; Hogarty et al., 

2005; MacCallum et al., 1999; MacCallum et al., 2001; Preacher and MacCallum, 2002). 

Although the effect of the number of participants on EFA results depends on various 

additional conditions such as the degree of overdetermination or the communality of the 

items larger sample sizes typically tend to result in less biased factor loadings. Therefore, it 

is assumed that there would be a positive effect of the average sample size on the accuracy 

of L  as an estimate of Λ. 

Hypothesis 2. In meta-analyses sampling error of individual samples is minimized 

by pooling effects across different samples. Increases in the number of effect sizes in a 

meta-analyses typically yields better control of sampling error and more accurate recovery 

of the population effects (e.g., Field, 200l, 2005; Hafdahl and Williams, 2009). Moreover, 

research on MASEM (e.g., Cheung and Chan, 2005) indicated that parameter accuracy of 

structural parameters tends to increase with the number of samples in the meta-analysis. 

Therefore, similar effects are expected with regard to the bias in L : There would be a 

positive effect of the number of samples on the accuracy of L  as an estimate of Λ. 

Hypothesis 3. Simulation studies indicate that factor loading biases in EFA are 

strongly influenced by the items’ communalities, that is, the proportion of variance 

accounted for by the major common factors (e.g., Hogarty et al., 2005; MacCallum et al., 

1999, 2001; de Winter et al., 2009). If communalities are high EFA results in less biased 

factor loadings. Therefore, it is expected that there would be a positive effect of the average 

communality of items on the accuracy of L  as an estimate of Λ. 
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Hypothesis 4. Model error refers to the lack of fit of the population factor model 

specified in [1] to the data. The common factor model described in [1] represents an 

idealized situation that rarely holds in practice. Rather, a number of unobserved minor 

common factors W also contribute to P (MacCallum et al., 2001): 

 2     P Λ Λ WW . [5] 

Although the minor common factors cannot be identified empirically using EFA 

their presence distorts estimates of Λ (even in the absence of sampling error) and, thus, 

influences the factor loading estimates (Briggs and MacCallum, 2003; Preacher and 

MacCallum, 2002). Therefore, it is expected that there would be a negative effect of the 

degree of model error on the accuracy of L  as an estimate of Λ. 

Hypothesis 5. The determination of the number of factors that underlie the data is 

sometimes a difficult task. As a consequence overextraction (extracting too many factors) 

or underextraction (extracting too few factors) can result. In general, underextraction is 

seen as a more serious problem than overextraction (Fava and Velicer, 1996; Wood, et al., 

1996). In case of the indirect method underextraction could be in particular 

disadvantageous because the information for reproducing the correlation matrix is 

diminished. Therefore, it is expected that for an increasing number of included studies in 

which underextraction occurred the accuracy of L  as an estimate of Λ would reduce. 

Hypothesis 6. The situation that primary studies with too few extracted factors exist 

can be handled in two different ways. The samples in which underextraction occurred can 

be included or excluded from the analysis. Whereas the latter approach reduces the number 

of samples in the meta-analyses it considers only valid factor structures. The former 
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approach does not affect the number of samples but includes potentially biased factor 

structures. Whether inclusion or exclusion of studies in which underextraction occurred has 

a stronger negative effect on the precision with which L  estimates Λ cannot be derived on 

an a priori basis. 

Hypothesis 7. Primary studies frequently neglect to report all required information 

for meta-analytic integration. In particular, some authors only report loadings exceeding an 

a priori set cutoff value (e.g., .3 or .4) and neglect to report smaller factor loadings that are 

considered insubstantial. Just like in underextraction the information available to reproduce 

the correlation matrix is reduced. Moreover, there is a systematic omission of smaller 

loadings which could distort the pooled factor loadings matrices. Therefore, it is expected 

that there would be a negative effect of the degree of reporting omissions on the accuracy 

of L  as an estimate of Λ. 

These hypotheses were examined in two independent Monte Carlo simulations. The 

first simulation focused on differences between the two proposed meta-analytic methods 

and examined Hypotheses 1 to 4. Moreover, the results for the indirect and direct method 

were compared to an established meta-analytic technique for the pooling of item-level 

correlation matrices (see Becker, 1996). A second simulation study investigated the 

performance of the indirect approach under additional conditions and focused on 

Hypotheses 5 to 7. 

Study I 

A Monte-Carlo simulation examined the parameter accuracy of factor structures 

derived from direct and indirect meta-analyses of loading matrices. In addition, the 
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experimental design evaluated two aspects of the examined population factor model (i.e. 

communality and model error) and two central influences on the meta-analytic results (i.e. 

sample size of primary studies and number of included studies). 

Method 

A schematic representation of the simulation procedure is summarized in Table 1. 

The entire simulation included six steps: Whereas step 4 refers to the focal meta-analytic 

procedures the remaining steps set up the current simulation (from data generation to the 

calculation of the accuracy indices). 

Data generation. A large number of sample correlation matrices were generated 

from known population correlation matrices that approximately represented a common 

factor model (step 1 in Table 1). The population correlation matrices were created using the 

Tucker, Koopman, and Linn (1969; see also MacCallum and Tucker, 1991) procedure that 

defines each manifest variable as a linear combination of three types of latent factors: major 

common factors, minor common factors, and unique factors as given in [5]. Minor common 

factors were included to create more realistic correlation matrices that approximately 

represent the major common factor structure because exact fit almost never holds in 

practice (cf. MacCallum et al., 2001). The factor model used to generate the population 

correlation matrices included p = 10 items loading on q = 2 major common factors and 100 

minor common factors. The two major factors were correlated at 12 = .30, whereas the 

minor common factors were uncorrelated among each other and also uncorrelated to the 

major factors. Five items had salient loadings on the first major factor, whereas the 

remaining variables loaded strongest on the second major factor. The communalities for 
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each manifest variable and, consequently, factor loadings were varied according to the 

experimental conditions (see below). Non-salient loadings on the major factors for each 

variable were specified to account for about 10% of the item’s communality. The 

population correlation matrices were simulated in R using the algorithms outlined in Hong 

(1999). 

In step 2 (see Table 1) item responses were generated from a multivariate normal 

distribution with the known population correlation structure using the eigen-decomposition 

method (Rizzo, 2008). The randomly generated item responses for each simulated sample 

were subjected to an exploratory maximum likelihood factor analysis that extracted two 

factors and obliquely rotated the pattern matrix using the oblimin criterion with δ = 0 (step 

3 in Table 1). Factor analyses that yielded Heywood cases (i.e. communalities greater than 

1) were discarded and replaced with a valid factor solution.3 The resulting sample factor 

loading matrices represented the effect sizes for the meta-analyses. 

Experimental design. Five design factors were manipulated in this study to 

evaluate their impact on the simulation results. The first design factor examined the meta-

analytical method: (a) In the direct method for the meta-analysis of factor structures, the 

factor loading matrices were aggregated using the fixed-effects GLS estimator as described 

above in [4]. Before synthesizing the loadings each sample factor structure was rotated 

                                                 

3 Because meta-analyses rely on published factor solutions, it seemed unlikely that improper factor solutions 

with Heywood cases would be available and, thus, could be incorporated into meta-analyses of factor 

loadings. Moreover, previous research indicated that screening results and replacing improper with valid 

factor solutions does not distort Monte Carlo simulations of factor analyses (MacCallum et al., 1999, 2001). 
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toward an idealized target structure T specifying 1s for all hypothesized salient loadings 

and 0s for hypothesized non-salient loadings (cf. step 4a in Table 1). The orthogonal 

Procrustes rotation applied here minimizes the squared differences between T and the 

loadings matrix (Schönemann, 1966). (b) In the indirect method for the meta-analysis of 

factor structures, the reproduced sample correlation matrices were calculated for each 

sample (step 4a in Table 1) and subsequently pooled using the same meta-analytical 

procedure as in the direct method. Factor loadings were derived by subjecting the pooled 

correlation matrix to an exploratory maximum likelihood factor analysis with oblimin 

rotation using δ = 0 (step 4c in Table 1). (c) As a control condition, the third meta-analytic 

method aggregated the sample correlation matrices generated in step 2 (Table 1). This 

condition represents the rare situation where item-level correlation matrices would be 

available for meta-analysis (cf. Becker, 1996). These correlation matrices were pooled 

using the fixed-effects GLS estimator given in [4] (step 4a in Table 1); subsequently, the 

pooled correlation matrix was subjected to an exploratory maximum likelihood factor 

analysis with oblimin rotation (step 4b). 

The second design factor varied the proportion of item variance accounted for by 

the two major common factors. In line with previous research (e.g., MacCallum et al., 

1999, 2001), we examined three levels: ‘low’ with values between .2 and .4; ‘wide’ with 

values varying between .2 and .8; and, ‘high’ with values falling between .6 and .8. The 

respective major common factor pattern matrices for the three conditions are presented in 

Appendix A. Thus, depending on the experimental condition a different population 

correlation matrix was generated (see Appendix B) that specified the respective proportion 

of accounted variance for each manifest variable. Because of the inclusion of minor 
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common factors these values are not entirely equivalent to the communality h2 of an item. 

However, communalities vary with the proportion of accounted variance. Therefore, this 

experimental condition will be referred to as low, wide, or high communalities, 

henceforward.  

The third design factor examined the level of model error that indicates the lack of 

fit of the major common factor model. Model error can be introduced by manipulating the 

proportion of variance for each manifest variable accounted for by the minor factors in [5] 

(Hong, 1999; Tucker et al., 1969). We acknowledged two levels of model error that 

accounted for either 10% (small error) or 20% (large error) of the item variance. These two 

conditions correspond to root mean squared error of approximations (RMSEA) for the 

major common factor model of .03 or .09. According to prevalent interpretations 

(Schermelleh-Engel et al., 2003) values or RMSEA < .05 indicate good fit whereas 

RMSEA > .08 are considered not acceptable. Thus, depending on the experimental 

condition a different population correlation matrix with either small or large model error 

was generated (see Appendix B). 

The fourth design factor varied the number of samples included in the meta-

analysis. Typical, meta-analyses of factor structures include between 20 and 30 studies 

(e.g., Shafer, 2005, 2006; Worley et al., 2008) and rarely exceed 50 studies (e.g., Huang 

and Dong, 2012). Therefore, the simulation included values representing small, moderate, 

and large number of samples included in a meta-analysis: 10, 30, and 50. 

The fifth design factor varied the average sample size in each meta-analysis. Sample 

sizes were randomly drawn from a normal distribution with a mean of the average sample 

size and a standard deviation of one fourth of the average sample size (cf. Cheung and 
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Chan, 2005). The average sample sizes (and their standard deviations) considered in this 

simulation were 60 (15), 200 (50), and 400 (100). These values represent small, medium, 

and large sample sizes for exploratory factor analyses (MacCallum et al., 2001). Because 

sample sizes were randomly generated and, thus, could theoretically become negative, the 

minimum sample size considered in this study was 30 (i.e. randomly generated sample 

sizes falling below this threshold were truncated to 30). 

Whereas the method of aggregation represented a within-replication factor (i.e. the 

three meta-analytic methods were applied to the same simulated samples), the remaining 

design factors were manipulated between replications. 

Evaluation criteria. The pooled factor structures were evaluated by conducting one 

thousand replications in each experimental condition (step 6 in Table 1). The parameter 

estimates were evaluated by three indices comparing the aggregated factor loading matrices 

to the population factor loading matrices: coefficient of alienation, (relative) bias, and 

(relative) mean squared deviation. Before calculating these indices the aggregated factor 

loading matrices L  were rotated to an optimal fit with the population factor matrix T using 

orthogonal Procrustes rotation yielding Λ̂  (step 5 in Table 1). To derive at the orthogonal 

Procrustes rotation of L  we use a singular value decomposition of matrix 'T L  

 ' T L PΩQ'  [6] 

where ' ' P P Q Q I  and  is the diagonal matrix with the singular values. Then 

 ˆ Λ LQP' . [7] 

The coefficient of alienation (K) indicates the dissimilarity of factor structures with 

values approaching 0 representing more similar factor structures. In this study, K was 
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derived for each replication on basis of the coefficient of congruence rc for complete factor 

loading matrices (Gebhardt, 1968) which is an extension of the more popular coefficient for 

single factor congruence (Tucker, 1951). rc is given by  

 1 1

2 2

1 1 1 1

λ̂ λ

λ̂ λ

p q

lm lm
l m

c p q p q

lm lm
l m l m

r  

   







 
. [8] 

Because rc is typically very close to its upper bound 1, to allow for a better 

discrimination it was transformed into the coefficient of alienation (cf. Borg and Leutner, 

1985) by 

 21 cK r   [9] 

which reflects the degree of incongruence4. A summary statistic was calculated by 

averaging K across replications. 

The accuracy of the factor loadings in Λ̂  as estimators of Λ  was examined using a 

measure of absolute bias defined as ˆ ˆ( ) E( )B  Λ Λ Λ . To facilitate interpretations we did not 

examine each element in Λ̂  separately5, but calculated the mean bias for the entire factor 

loading matrix yielding 

                                                 

4 All analyses were also repeated using rc. Because respective results closely mirrored those for K, they are 

not presented. 

5 We also examined bias for each parameter in Λ̂  individually. However, since these analyses did not lead to 

markedly different conclusions but replicated the pattern of effects of the reported results, the respective 

analyses are not presented here. 



META-ANALYSES OF FACTOR STRUCTURES 

 

20

 1 1

ˆ(λ λ )
ˆ( )

p q

lm lm
l mB E

p q
 

 
 

 
 

 
 


Λ  [10] 

(see MacCallum et al., 2001, and Myers et al., 2015, for a similar index). Similarly, we 

calculated the average relative bias (Hoogland and Boomsma, 1998) for the entire factor 

loading matrix as 
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In line with prevalent practice relative biases below 10% (Forero et al., 2009) or 5% 

(Hoogland and Boomsma, 1998) are considered insubstantial, whereas values above 20% 

are deemed unacceptable. 

Finally, the efficiency of the new meta-analytic methods is reported in terms of the 

mean squared error (MSE) which is given as 2ˆ ˆ( ) E ( )MSE    Λ Λ Λ . Because ˆ( )MSE Λ  can 

be simplified to 2ˆ ˆ ˆ( ) ( ) ( )MSE B VAR Λ Λ Λ  a more biased estimator might be more efficient if 

it yields a considerable smaller variance (Mood et al., 1973). Again, MSE was calculated as 

the mean error for the entire factor loading matrix (Velicer and Fava, 1998): 

 

2
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Moreover, two estimators can be compared based on their relative efficiency (Hafdahl and 

Williams, 2009) using  1 2
ˆ ˆ( ) ( ) 1 100MSE MSE  Λ Λ .  
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In addition to evaluating the entire factor pattern, B and MSE were also calculated 

separately for salient and non-salient factor loadings using [10], [11], and [12] on a subset 

of loadings in Λ̂ . 

Results 

The effects of the experimental manipulations on the three evaluation criteria were 

analyzed using 3 (method of aggregation: direct, indirect, control) x 3 (communality: low, 

wide, high) x 2 (model error: small, large) x 3 (number of samples: 10, 30, 50) x 3 (average 

sample size: 60, 200, 400) analyses of variance (ANOVA). Given the skewed distribution 

of K the respective analysis was performed on the Fisher’s Z transformed coefficients of 

alienation. Because of the large number of replications in each condition the F-tests had 

excessive power and yielded significant results even for negligible effects. Therefore, the 

interpretations of these results focus on generalized eta squared 2ηG as effect size (Bakeman, 

2005; Olejnik and Algina, 2003). 2ηG  indicates the proportion of explained variance by a 

main effect or interaction after eliminating the effects of the other experimental factors. In 

line with prevalent recommendations (Ferguson, 2009), 2ηG exceeding .04 are considered 

practically relevant effects. Post-hoc analyses for within-replication factors are based on 

paired-sample t-tests and Hedges (1981) g as effect size (see Dunlap, Cortina, Vaslow and 

Burke, 1996, for g in repeated measurement designs). 

Similarity of factor loading pattern. As summarized in Table 3, factor 

incongruence was most strongly influenced by the level of communality ( 2ηG  = .91) and 

model error ( 2ηG  = .83). Factor patterns with larger communalities and less error resulted in 



META-ANALYSES OF FACTOR STRUCTURES 

 

22

smaller K (see Figure 1). Moreover, the interaction ( 2ηG  = .80) indicated that incongruence 

was largest for factor structures containing low communalities and large error at the same 

time. Thus, characteristics of the population factor model influenced the similarity between 

the meta-analytic and population factor structure most strongly. In addition, the average 

sample size ( 2ηG  = .22) and the number of samples included in the meta-analysis ( 2ηG  = .14) 

had non-negligible impact on factor incongruence. Factor loadings derived from larger 

samples and increases in the number of primary studies were associated with smaller K. To 

some degree the accuracy of small-samples meta-analyses could be improved by increasing 

the number of included samples, as indicated by the respective interaction ( 2ηG  = .08). In 

contrast, the number of samples had only a small impact on meta-analyses with average 

sample sizes of 200 or 400. Moreover, these effects were most pronounced for the low 

communality conditions (see left column in Figure 1), as indicated by the interaction 

between communality and sample size ( 2ηG  = .12) or number of samples ( 2ηG  = .08). With 

regard to the adopted meta-analytic approach, the simulation identified a small effect ( 2ηG = 

.07). Post-hoc analyses showed that this effect was primarily due to the direct method 

resulting in larger incongruence than the indirect method, t(53,999) = 156.74, p < .001, g = 

0.11, and the control condition, t(53,999) = 140.43, p < .001, g = 0.12. In contrast, the 

indirect method produced similar results as the control condition, t(53,999) = 11.58, p < 

.001, g = 0.00. Particularly, for small sample meta-analyses the indirect method for the 

meta-analysis of factor structures slightly outperformed the direct approach (see top row of 
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Figure 2). All higher-order interactions had negligible effects ( 2ηG  < .04) and are thus not 

reported in Table 3. 

Accuracy of estimators. Systematic over- and underestimation of factor loadings in 

the form of absolute bias B did not reveal pronounced effects with regard to the three 

estimators (see Table 3). Although bias tended to increase with the level of communality (

2ηG  = .40), all three meta-analytical methods tended to overestimate the population factor 

loadings slightly ( 2ηG  = .10). In particular, the direct method resulted in slightly larger bias 

than the indirect method, t(53,999) = 164.19, p < .001, g = 0.55, and the control condition, 

t(53,999) = 165.68, p < .001, g = 0.44. The difference between the indirect method and the 

control condition was considerably smaller, t(53,999) = 110.92, p < .001, g = 0.15, with 

slightly larger bias for the indirect method. Overall, the relative bias Br was rather large for 

all three estimators and fell at about 12% for the direct method as compared to about 10% 

for the indirect method and the control condition. 

Separate analyses conducted for the salient and non-salient factor loadings (see 

Table S1 in the online supplement) indicated that the observed differences in B for the three 

meta-analytical methods were limited to the non-salient loadings: Whereas the absolute 

bias in non-salient loadings was affected by the meta-analytic method ( 2ηG  = .19)—being 

largest for the indirect method as compared to the direct method, t(53,999) = 171.85, p < 

.001, g = 0.50, or the control condition, t(53,999) = 166.97, p < .001, g = 0.50, but 

negligible for the direct method as compared to the control condition, t(53,999) = 12.59, p 

< .001, g = 0.01—respective analyses for salient loadings did not identify an effect ( 2ηG  = 

.02). As a consequence the relative bias Br was negligible for salient factor loadings (less 
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than 2% for all three estimators), whereas the relative bias was rather severe for non-salient 

loadings (25% for the indirect method versus 22% for the indirect method and the control 

condition). Thus, none of the available meta-analytic method was able to adequately 

estimate the magnitude of non-salient factor loadings. 

Efficiency of estimators. The pattern of results for the mean squared error (see 

Table 3) is similar to that for K. Whereas the level of communality ( 2ηG  = .54), model error 

( 2ηG  = .77) and the interaction of both factors ( 2ηG  = .70) had the strongest effects on MSE 

(see Figure 3 for the respective root mean squared errors6), the impact of the average 

sample size ( 2ηG  = .21) and the number of studies ( 2ηG  = .13) was considerably smaller. 

Again, the method of aggregation had a small effect on the simulation results ( 2ηG  = .05). 

Post-hoc analyses indicated that the direct method showed significantly larger MSE than the 

indirect method, t(53,999) = 149.22, p < .001, g = 0.15, p < .001, and the control condition, 

t(53,999) = 126.88, p < .001, g = 0.15. In contrast, the indirect method did not differ from 

the control condition, t(53,999) = 0.97, p = .33, g = 0.00. Overall, the indirect method 

resulted in slightly smaller MSE, particularly for small-sample meta-analyses, than the 

direct method (see bottom row in Figure 2). In terms of relative efficiency, the control 

condition was about 9% more efficient than the direct method, whereas it showed no 

superior efficiency (0%) in comparison to the indirect method. Similarly to bias B, the 

observed differences in MSE for the three meta-analytical methods were limited to the non-

                                                 

6 For illustrative purposes MSE was transformed into the root mean squared error as ˆ( ) ( )ˆRMSE MSE ΛΛ

. 
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salient loadings, 2ηG  = .10 (see bottom row in Figure S1 and Table S1 in the online 

supplement). Aggregation of the salient factor loadings was not affected by the adopted 

meta-analytical approach, 2ηG  = .00 (top row in Figure S1). Again, post-hoc analyses 

showed that these differences for the non-salient loadings were due to the direct method 

resulting in larger MSE than the indirect method, t(53,999) = 167.24, p < .001, g = 0.40, 

and the control condition, t(53,999) = 152.82, p < .001, g = 0.39. In contrast, the indirect 

method was comparable to the control condition, t(53,999) = 11.48, p < .001, g = 0.01. 

These results translated into relative efficiencies of 14% and 0% for the control condition 

over the direct and the indirect method, respectively. 

Auxiliary analyses. The previous results demonstrated rather small differences 

between the indirect method that calculated the implied correlation matrix R* from the 

reported factor loadings and the control condition that used the original sample correlation 

matrix R. Potential differences between the two meta-analytic techniques would be due to a 

loss of information resulting from conducting an EFA before pooling the correlations. 

Accuracy and efficiency indices calculated between the two correlation matrices R and R* 

(see Figure 4) indicated that the accuracy of the reproduced correlations are strongly 

affected by the communalities of the items. The coefficient of alienation K showed that for 

larger communalities the sample and reproduced correlation matrices differed by less than 1 

percent. In contrast, for small communality matrices respective differences increased up to 

6 percent. Thus, potential advantages of meta-analyses of factor structures using the item-

level correlation matrices (Becker, 1996; Cheung, 2014; Cheung and Chan, 2005) would be 
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limited to ill-defined factor structures that are dominated by items with small 

communalities. 

Study II 

The second simulation study further investigates the accuracy of the indirect method 

under two conditions that occur frequently in practice: Too few factors are extracted or the 

loading matrix is not fully reported. Therefore, the Monte Carlo simulation examined the 

effect of underextraction (Hypotheses 5 and 6) and reporting omissions (Hypothesis 7) on 

the parameter accuracy of meta-analytical estimates using the indirect method. 

Method 

Data generation. Sample correlation matrices were simulated adopting a similar 

procedure as in the previous study. However, sample data was derived from a single 

population correlation matrix that reflected common conditions for EFA in practice: It 

resembled the wide communality condition with small model error in the previous study; 

that is, the percentage of variance accounted for by the two major common factors fell 

between .2 and .8 and the fit of the major factor model was RMSEA = .03. Moreover, the 

correlation between the two major common factors was set at 12 = .49 to increase the 

likelihood of underextraction in the experimental design (see below) The average sample 

size and the number of samples included in the simulated meta-analyses were held constant 

at values of 200 and 30, respectively, that reflect typical values for meta-analyses of factor 

structures (cf. Shafer, 2005, 2006; Worley et al., 2008). The remaining conditions of the 

data generation procedure were identical to the previous simulation. 
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Experimental design. Three design factors were manipulated in this study to 

evaluate their impact on the simulation results. The first design factor varied the percentage 

of underextraction included in the meta-analysis. This manipulation was implemented by 

calculating ωh for each randomly generated sample (McDonald, 1999) which quantifies the 

proportion of test variance captured by a single factor. For samples with ωh  falling either 

below 1.00, .50, or .45 the correct factor analytical model was specified; that is, the 

exploratory factor analysis extracted two factors. In contrast, for samples with ωh exceeding 

these thresholds an invalid factor analytic model was specified; that is, the exploratory 

factor analysis extracted a single factor. As a consequence, the percentage of 

underextraction fell at about 0%, 10%, and 32% for the three examined conditions. The 

respective thresholds for ωh were derived on a trial-and-error basis to approximately result 

in the specified percentages of underextraction. 

The second design factor examined the method of handling underextraction by 

either including or excluding samples with one extracted factor. 

The third design factor studied the effect of reporting omissions when primary 

studies only report strong loadings exceeding an a priori set criterion (e.g., .3 or .4) but 

neglect to report smaller factor loadings. Factor loadings falling below .3 are frequently 

viewed as negligible (e.g., Fabrigar et al., 1999; Henson & Roberts, 2006) and, thus, might 

be systematically missing for meta-analyses. This effect was studied by substituting all 

loadings in a sample falling below .3 as missing and assuming loadings of 0 in the meta-

analysis. We considered three conditions that specified 0%, 10%, or 25% of samples 

included in a meta-analysis as exhibiting reporting omissions. 
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Whereas the method of handling underextraction represented a within-replication 

factor (i.e. the two approaches were applied to the same simulated samples), the other 

design factors were manipulated between replications. 

Evaluation criteria. Factor structures were pooled using the indirect method as 

described above. The accuracy of the pooled factor structures were examined based on 

1,000 replications using the same indices as the previous study: coefficient of alienation 

(K), (relative) bias (B), and mean squared error (MSE). 

Results 

The effects of the experimental manipulations on the three fit indices were analyzed 

using 3 (percentage of underextraction: 0%, 10%, 32%) x 2 (handling of underextraction: 

inclusion, exclusion) x 3 (reporting omissions: 0%, 10%, 25%) analyses of variance. The 

analysis of K was again based on the Fisher’s Z transformed coefficients. The results of 

these analyses are summarized in Table 4. 

Overall, the experimental manipulations hardly affected K, but had more 

pronounced effects on MSE (see Figure 5). Parameter accuracy was most strongly affected 

by the percentage of underextraction included in the meta-analyses (see hypothesis 5), 2ηG  = 

.14 for K and 2ηG  = .49 for MSE, and was larger when samples with underextraction were 

included (instead of discarded; see hypothesis 6), 2ηG  = .14 and 2ηG  = .44. Moreover, the 

interactions, 2ηG  = .18 for K and 2ηG  = .49 for MSE, indicated that parameter accuracy 

decreased strongest for meta-analyses that included a large proportion of samples where 

underextraction occurred (see Figure 5). In contrast, reporting omissions had a minor 

impact.  
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Separate analyses conducted for the salient and non-salient factor loadings (see 

Table S2 and Figure S2 in the online supplement) showed that reporting omissions 

(hypothesis 7) primarily affected the MSE of non-salient factor loadings ( 2ηG  = .14) but 

hardly distorted salient loadings ( 2ηG  = .00). In contrast, the inclusion of samples with 

underextraction ( 2ηG  = .46) primarily biased salient factor loadings and to a lesser degree 

the accuracy of non-salient loadings ( 2ηG  = .14). In terms of relative bias, these results 

translated into an underestimation of salient factor loadings of about 3% and 6% for meta-

analyses including no underextraction or large underextraction, respectively. For non-

salient loadings the respective values fell at 36% for both conditions. Thus, similar to the 

previous simulation the meta-analyses were unable to adequately estimate the magnitude of 

non-the salient factor loadings. 

Discussion 

The presented Monte Carlo simulation evaluated two new approaches for the meta-

analysis of factor structures: the direct method subjected each loading individually to a 

meta-analysis, whereas the indirect method derived aggregated loadings from the pooled 

correlations reproduced by the sample factor loadings matrix. In general, both methods led 

to rather similar results: Meta-analyses of factor structures are most strongly affected by 

characteristics of the population factor structure; that is, the accuracy of the pooled factor 

loadings are predominately affected by the degree of model error and the communalities of 

the items. To a somewhat lesser degree respective results also depend on the sample size of 

the primary studies. Small-sample studies result in more biased factor loadings. However, 

the respective distortion in an individual study can be compensated in meta-analyses by 
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including a large number of studies. With regard to the two approaches for aggregating 

factor structures the simulation identified small differences. Overall, compared to the direct 

method the indirect method was slightly superior and resulted in larger factor congruence 

and less parameter bias, particularly for meta-analyses of small-sample studies. Thus, in 

practice the choice of the meta-analytical method would be likely to be of minor 

consequence. However, the indirect method has several conceptual advantages (see also 

Table 2): 

(a) It allows for the integration of primary studies with different number of extracted 

factors which is not possible in the direct method. (b) A second advantage is the flexibility 

of analyzing the pooled correlation matrix *R  with different EFA models or CFA models. 

Thus, competing models can be tested and different methods (e.g., with respect to rotation) 

can be applied. (c) It is also possible to combine the indirect method with Becker’s (1996) 

approach: Whenever the item correlation matrix R is presented in the primary study it can 

be used for the meta-analytical integration (as in MASEM). If only the sample loadings 

matrix is available the correlation matrix is reproduced using the indirect approach. The 

meta-analytical integration then combines the R and R* matrices from the primary studies 

as described. It is also possible to code the type of correlation matrix (R versus R*) and 

analyze the type as a moderator variable. (d) Finally, moderator analyses could also be 

performed for other hypotheses (e.g., on cross-cultural measurement invariance) within the 

well-established framework of multi-group invariance testing (Davidov et al., 2014). 

Directions for Future Research 
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The presented Monte Carlo simulations provided initial evidence for the suitability 

of two methods for the meta-analysis of factor structures. However, these results should be 

corroborated and extended by additional studies that could follow along two lines of 

research: 

First, future research could refine the proposed meta-analytic methods. For example, 

the present study assumed homogenous population effects and, thus, presented methods for 

fixed-effects meta-analyses. However, the assumption that the population effect sizes are 

identical in all studies is rarely tenable in applied practice (Geyskens et al., 2009; Schmidt 

et al., 2009). Therefore, it is recommended to (a) study the accuracy of the indirect and 

direct approach for the pooling of heterogeneous factor loading matrices and (b) extend the 

introduced meta-analytic techniques to random effects models. Moreover, future research 

could also examine whether Fisher’s Z transformations might improve the accuracy of the 

pooled factor loadings (cf. Hafdahl, 2009; 2010). 

Second, future research should investigate further characteristics of the pooled 

primary studies that might affect the meta-analytic results. For example, the present study 

relied on maximum likelihood EFA. However, in practice researchers select various 

methods such as principal axis factoring or principal component analyses (Henson and 

Roberts, 2006). Simulation studies indicate that under certain conditions the choice of the 

estimator can have pronounced effects on factor pattern recovery (e.g., Briggs and 

MacCallum 2003; Velicier and Fava, 1998; de Winter and Dodou, 2012). Similarly, 

researchers can select among a variety of rotation criteria (cf. Browne, 2001) that have been 

shown to differentially affect resulting factor loading patterns (Schmitt and Sass, 2011). 

Therefore, future research on the direct approach is encouraged to study the effect of 
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pooling factor loading matrices derived with different estimators using different rotation 

criteria. 

Conclusions 

The proposed new methods for the meta-analytical integration of factor structures 

offer alternatives to the Shafer (2005, 2006) approach and MASEM (Cheung, 2014, 2015) 

which are usually applied for this purpose. One advantage of the new methods is that they 

convey metric information about the magnitude of each loading. Taking into account the 

greater flexibility of use and the slightly better performance in the simulations especially 

the indirect method appears to be a promising method that deserves further attention. 
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Table 1. 

Overview of Simulation Procedure by Meta-Analytic Approach 

 Direct method Indirect method Control condition 

Step 1: Six p x p population correlation matrices P (see Appendix B) are constructed 
which approximate a factor structure Λ with q correlated major common factors 
and a q x q matrix of correlations between major factors Φ. Here p = 10, q = 2, 
and φ12 = .30 are invariant. Five items have salient loadings on factor 1 and five 
items on factor 2. The idealized p x q pattern target matrix T contains five rows 
(1, 0) and five rows (0, 1). The communalities (low, wide, or high) and the model 
error (small or high) are manipulated. 

Step 2: Data for a meta-analysis are generated by drawing k random samples of size n 
from a multivariate normal distribution with the correlation structure P. This 
yields k correlation matrices R. Here k and n are manipulated. 

Step 3: An exploratory maximum likelihood factor analysis 
with two oblimin rotated factors is performed on each 
R resulting in a p x q pattern matrix L and a q x q 
matrix of correlations between factors F for each 
sample. 

 

Step 4: (a) The pattern matrices L 
are rotated to the target 
matrix T using an ortho-
gonal Procrustes rotation 
and yield matrices L . 

(a) From the pattern 
matrices L the sample 
correlation matrices R* 
are reproduced via 
R* = LFL′. 

(a) The k sample 
correlation matrices R 

are meta-analytically 
aggregated into R . 

 (b) The k pattern matrices 
L  are meta-analytically 
aggregated into L. 

(b) The k matrices of the 
reproduced correlations 
R* are meta-analytically 
aggregated into *R . 

(b) R  is subjected to an 
exploratory maximum 
likelihood factor 
analysis with two 
oblimin rotated factors 
resulting in pattern 
matrix L. 

  (c) *R  is subjected to an 
exploratory maximum 
likelihood factor analysis 
with two oblimin rotated 
factors resulting in pattern 
matrix L.

Step 5: The pattern matrix L is rotated to the population target matrix Λ by means of an 
orthogonal Procrustes rotation yielding matrix Λ̂ . 

Step 6: Steps 2 to 5 are repeated 1,000 times for each experimental condition. Fit indices 
between the two matrices Λ̂  and Λ (coefficient of alienation, K; root mean 
squared error, RMSE; and bias, B) are computed. 
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Table 2. 

Comparison of Meta-Analytic Approaches 

 
Direct 

method 
Indirect 
method 

MASEM 

What are the required effect sizes 
from the primary studies? 

Factor 
loadings 

Factor 
loadings d 

Item-level 
correlations 

Can loading matrices with a 
different number of factors be 
pooled? 

no yes - 

Can competing configural models 
be examined? 

no yes yes 

Are estimates of pooled factor 
loadings available? 

yes yes yes 

How can moderator hypotheses be 
addressed? 

Meta-regression 
analyses a for each 

factor loading 
individually 

Multi-group 
analyses b, 

gradients of factor 
loadings c 

Multi-group 
analyses b, 

gradients of factor 
loadings c 

Note. a see Viechtbauer et al. (2014); b see Davidov et al. (2014); c see Gnambs (2013); d Although 

not examined in these simulations it is in principle possible to meta-analytically combine the 

correlations matrices reproduced form the loadings with item-level correlation matrices as in 

MASEM. 
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Table 3. 

ANOVA Results for the Accuracy of Aggregated Factor Loading Matrices in Study I 

 
Coefficient of 
alienation K

 Bias B  Relative Bias Br  
Mean squared error 

MSE

 F df 2ηG   F df 2ηG   F df 2ηG   F df 2ηG  

Aggregation method (m) 42,079 2 .068  121,230 2 .101  118,056 2 .176  27,129 2 .049 

Communality (h) 289,660 2 .907  18,905 2 .400  6,614 2 .181  35,136 2 .539 

Model error (e) 295,531 1 .832  8534 1 .015  843 1 .014  202,762 1 .771 

Number of samples (k) 4,697 2 .136  2† 2 .000  9 2 .000  4,281 2 .125 

Sample size (n) 8,597 2 .224  18 2 .001  805 2 .026  7,737 2 .205 

m x h 14,041 4 .046  55,211 4 .093  59,283 4 .177  6,450 4 .024 

m x e 300 2 .001  4,403 2 .004  3,287 2 .006  414 2 .001 

m x k 86 4 .000  93 4 .000  85† 4 .000  7 4 .000 

m x n 10,739 4 .036  24,698 4 .044  24,519 4 .082  8,205 4 .030 

h x e 116,166 2 .796  66 2 .002  1,070 2 .035  71,093 2 .703 

h x k 2,299 4 .080  5 4 .000  11 4 .001  953 4 .060 

h x n 1,985 4 .118  293 4 .020  641 4 .041  1,1780 4 .073 

e x k 38 2 .001  0† 2 .000  0† 2 .000  67 2 .002 

e x n 220 2 .007  8 2 .000  18 2 .001  21 2 .001 

k x n 1,207 4 .075  1† 4 .000  4† 4 .000  1,265 4 .078 

Note. Results for higher-order interactions with 2ηG  < .04 are not presented. All effects except those marked with †are significant at p < .001. 
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Table 4. 

ANOVA Results for the Accuracy of Aggregated Factor Loading Matrices in Study II 

 Coefficient of 
alienation K

 Bias B  Relative bias Br  Mean squared error 
MSE 

 F df 2ηG   F df 2ηG   F df 2ηG   F df 2ηG  

Percentage of underextraction (u) 903 2 .139  11,579 2 .639  752 2 .140  7,215 2 .486 

Handling of underextraction (h) 7,109 1 .135  38,050 1 .570  20,356 1 .053  16,919 1 .436 

Reporting omissions (o) 1,169 2 .173  5,032 2 .435  15,168 2 .767  135 2 .017 

u x h 5,009 2 .181  19,444 2 .575  10,839 2 .056  10,614 2 .492 

u x o 34 4 .012  5 4 .001  2† 4 .001  9 4 .002 

h x o 408 2 .018  14 2 .001  36 2 .000  40 2 .004 

u x h x o 198 4 .017  7 4 .001  19 4 .000  23 4 .004 

Note. All effects except those marked with †are significant at p < .001. 
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Figure 1. Mean coefficients of alienation K by experimental conditions in Study I 
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Figure 2. Mean coefficients of alienation K (top row) and root mean squared errors RMSE 

(bottom row) by meta-analytical method in Study I 
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Figure 3. Mean root mean squared error RMSE by experimental conditions in Study I 
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Figure 4. Mean coefficients of alienation K (top row) and root mean squared errors RMSE 

(bottom row) for the accuracy of the reproduced correlation matrices 
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Figure 5. Mean parameter accuracy by experimental conditions in Study II
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Appendix A 

Major factor loadings for the population model in the three experimental conditions 

 

 Low 
communality 

 Wide 
communality 

 High 
communality 

Item F1 F2 h2  F1 F2 h2  F1 F2 h2 

I1 .52 .17 .36  .52 .17 .36  .76 .25 .76 

I2 .39 .13 .20  .76 .25 .76  .68 .23 .60 

I3 .52 -.17 .25  .52 -.17 .25  .84 -.28 .65 

I4 .50 .17 .33  .50 .17 .33  .75 .25 .73 

I5 .55 -.18 .28  .86 -.29 .68  .86 -.29 .68 

I6 .18 .55 .39  .18 .53 .37  .26 .78 .79 

I7 -.19 .58 .31  -.29 .88 .71  -.29 .88 .71 

I8 -.16 .49 .22  -.16 .49 .22  -.27 .82 .62 

I9 -.18 .54 .27  -.27 .82 .62  -.29 .86 .67 

I10 .18 .53 .37  .26 .77 .77  .26 .77 .77 
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Appendix B 

Population correlation matrices by experimental conditions 

  I1 I2 I3 I4 I5 I6 I7 I8 I9 I10  

L
ow

 c
om

m
un

al
it

y,
 

sm
al

l m
od

el
 e

rr
or

 

I1  .33 .12 .37 .29 .29 .07 .02 .07 .33 

L
ow

 com
m

unality, 
large m

odel error 

I2 .21  .06 .40 .35 .19 .17 .10 .12 .23 

I3 .26 .19  .17 .23 .08 -.14 -.13 -.07 .03 

I4 .37 .22 .24  .39 .28 .13 .08 .12 .20 

I5 .26 .21 .30 .24  .06 .00 -.07 .04 .06 

I6 .31 .18 .06 .29 .10  .20 .07 .27 .46 

I7 .12 .05 -.10 .12 -.10 .30  .36 .35 .31 

I8 .04 .08 -.07 .06 -.07 .21 .25  .23 .16 

I9 .12 .02 -.08 .10 -.10 .30 .34 .22  .25 

I10 .27 .24 .08 .27 .06 .36 .27 .22 .27  

             

W
id

e 
co

m
m

un
al

it
y,

 
sm

al
l m

od
el

 e
rr

or
 

I1  .71 .56 .77 .54 .60 .16 .12 .19 .65 

W
ide com

m
unality, 

large m
odel error 

I2 .67  .51 .67 .45 .54 .15 .15 .17 .55 

I3 .57 .51  .58 .73 .16 -.24 -.28 -.28 .19 

I4 .74 .67 .56  .55 .59 .14 .11 .20 .60 

I5 .59 .54 .67 .57  .15 -.22 -.23 -.26 .14 

I6 .57 .51 .19 .57 .17  .62 .58 .60 .82 

I7 .18 .16 -.25 .18 -.26 .61  .68 .69 .62 

I8 .17 .15 -.21 .16 -.23 .59 .65  .60 .53 

I9 .15 .15 -.24 .19 -.24 .61 .69 .64  .59 

I10 .59 .52 .18 .57 .16 .78 .60 .55 .58  
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H

ig
h 

co
m

m
un

al
it

y,
 

sm
al

l m
od

el
 e

rr
or

 

I1  .54 .22 .35 .40 .28 .14 .04 .13 .43 

H
igh com

m
unality, 

large m
odel error 

I2 .54  .35 .51 .59 .42 .21 .12 .18 .60 

I3 .22 .35  .23 .43 .07 -.14 -.08 -.15 .10 

I4 .35 .51 .23  .37 .24 .09 .05 .11 .39 

I5 .40 .59 .43 .37  .12 -.25 -.13 -.22 .17 

I6 .28 .42 .07 .24 .12  .43 .25 .38 .51 

I7 .14 .21 -.14 .09 -.25 .43  .43 .66. .60 

I8 .04 .12 -.08 .05 -.13 .25 .42  .36 .31 

I9 .13 .18 -.15 .11 -.22 .38 .66 .36  .56 

I10 .43 .60 .10 .39 .17 .51 .60 .31 .56  
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Table S1. 

ANOVA Results for the Accuracy of Salient and Non-Salient Factor Loadings in Study I 

 Bias B  Relative bias Br

 Salient 
factor loadings 

 Non-salient 
factor loadings 

 Salient 
factor loadings 

 Non-salient 
factor loadings 

 F df 2ηG   F df 2ηG   F df 2ηG   F df 2ηG  

Aggregation method (m) 65,156 2 .021  130,371 2 .193  55,296 2 .020  116,193 2 .183 

Communality (h) 13,326 2 .327  81,555 2 .732  2,930 2 .096  8,639 2 .223 

Model error (e) 81 1 .001  778 1 .013  2,547 1 .044  120 1 .002 

Number of samples (k) 3 2 .000  12 2 .000  2† 2 .000  12 2 .000 

Sample size (n) 1,063 2 .037  1,525 2 .049  745 2 .026  1,374 2 .044 

m x h 33,163 4 .022  48,388 4 .151  33,697 4 .025  56,198 4 .179 

m x e 17,058 2 .006  4,018 2 .007  17,424 2 .006  3,780 2 .007 

m x k 12 4 .000  87 4 .000  10 4 .000  80 4 .000 

m x n 19,978 4 .013  29,017 4 .096  16,655 4 .012  24,923 4 .088 

h x e 2,565 2 .085  2,084 2 .065  3,893 2 .124  1,919 2 .060 

h x k 0† 4 .000  10 4 .001  0† 4 .000  12 4 .001 

h x n 9 4 .001  541 4 .035  22 4 .002  684 4 .044 

e x k 0† 2 .000  0† 2 .000  0† 2 .000  0† 2 .000 

e x n 19 2 .001  40 2 .001  27 2 .002  32 2 .001 

k x n 83 4 .000  6 4 .000  2 4 .000  2† 6 .000 

Note. Results for higher-order interactions with 2ηG  < .04 are not presented. All effects except those marked with †are significant at p < .001. 
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Table S1 (continued). 

  Mean square error MSE

  Salient 
factor loadings 

 Non-salient 
factor loadings 

  F df 2ηG   F df 2ηG  

Aggregation method (m)  161 2 .000  58,103 2 .095 

Communality (h)  94,809 2 .764  4,298 2 .126 

Model error (e)  247,498 1 .809  26,182 1 .305 

Number of samples (k)  2,038 2 .065  2,605 2 .080 

Sample size (n)  2,250 2 .071  6,736 2 .184 

m x h  111 4 .000  14,285 4 .049 

m x e  15 2 .000  938 2 .002 

m x k  14 4 .000  21 4 .000 

m x n  60 4 .000  17,243 4 .059 

h x e  81,968 2 .737  12,327 2 .292 

h x k  571 4 .038  460 4 .030 

h x n  243 4 .016  1,234 4 .076 

e x k  29 2 .001  44 2 .001 

e x n  13 2 .000  85 2 .003 

k x n  613 4 .040  758 4 .048 
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Table S2. 

ANOVA Results for the Accuracy of Salient and Non-Salient Factor Loadings in Study II 

 Bias B  Relative bias Br  Mean square error MSE 

Salient loadings            

 F df 2ηG   F df 2ηG   F df 2ηG  

Percentage of underextraction (u) 13,105 2 .645  11,207 2 .623  9,954 2 .541 

Handling of underextraction (h) 37,656 1 .611  37,276 1 .582  16,209 1 .457 

Reporting omissions (o) 69 2 .010  101 2 .015  21 2 .002 

u x h 19,175 2 .616  19,030 2 .587  10,491 2 .522 

u x o 5 4 .001  6 4 .002  6 4 .001 

h x o 22 2 .002  27 2 .002  10 2 .001 

u x h x o 10 4 .002  13 4 .002  7 4 .001 

Non-salient loadings            

 F df 2ηG   F df 2ηG   F df 2ηG  

Percentage of underextraction (u) 64 2 .014  47 2 .010  377 2 .071 

Handling of underextraction (h) 21,946 1 .064  19,477 1 .046  15,523 1 .140 

Reporting omissions (o) 14,372 2 .757  14,145 2 .754  825 2 .143 

u x h 10,864 2 .063  9,520 2 .045  8,165 2 .147 

u x o 0† 4 .000  0† 4 .000  10 4 .004 

h x o 83 2 .001  2† 2 .000  544 2 .011 

u x h x o 38 4 .000  1† 4 .000  272 4 .011 

Note. All effects except those marked with †are significant at p < .001. 
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Figure S1. Mean root mean square error RMSE for salient (bottom row) and non-salient (top 

row) factor loadings by meta-analytical method in Study I 
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Figure S2. Mean root mean square error RMSE for salient (bottom row) and non-salient (top row) factor loadings by experimental conditions in 

Study II 

 


