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Abstract

Meta-analyses of treatment effects in randomized control trials are often faced

with the problem of missing information required to calculate effect sizes and

their sampling variances. Particularly, correlations between pre- and posttest

scores are frequently not available. As an ad-hoc solution, researchers impute

a constant value for the missing correlation. As an alternative, we propose

adopting a multivariate meta-regression approach that models independent

group effect sizes and accounts for the dependency structure using robust vari-

ance estimation or three-level modeling. A comprehensive simulation study

mimicking realistic conditions of meta-analyses in clinical and educational

psychology suggested that imputing a fixed correlation 0.8 or adopting a multi-

variate meta-regression with robust variance estimation work well for estimat-

ing the pooled effect but lead to slightly distorted between-study heterogeneity

estimates. In contrast, three-level meta-regressions resulted in largely unbiased

fixed effects but more inconsistent prediction intervals. Based on these results

recommendations for meta-analytic practice and future meta-analytic develop-

ments are provided.
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What is already known
• Randomized control trials (RCT) estimate treatment effects by comparing

the change between pre- and posttest in an intervention group to the change
in a control group.

• For the calculation of RCT effects often a constant value is imputed for miss-
ing pre-post correlations.

What is new
• Meta-analyses with imputed pre-post correlations and multivariate approaches

that allow pooling RCT effects with missing pre-post correlations result in
largely unbiased point and interval estimates of fixed effects, albeit three-level
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meta-analyses exhibit a slight overcoverage of the confidence intervals and sub-
stantial undercoverage rates of the prediction intervals.

• As compared to univariate meta-analyses of posttest effect sizes, meta-
analyses of RCT effects were not affected by posttest variance heterogeneity
or attrition bias.

Potential impact
• The choice of the meta-analytic model has a negligible impact on the pooled

effects in RCTs when pre-post correlations are missing.
• For practical applications, it is recommended to conduct univariate meta-

analyses that impute a fixed value of 0.8 for the missing correlation or, alter-
natively, adopt a multivariate meta-regression model with robust variance
estimation.

1 | INTRODUCTION

Randomized control trials (RCT) are often considered the
gold standard to infer scientific evidence from empirical
data,1,2 thus, informing decisions in health care and edu-
cation policy. The focus of RCTs is on treatment or inter-
vention effects that compare the difference in the average
change of an outcome between two measurement occa-
sions (pretest vs. posttest) for two randomly assembled
groups (treatment vs. control group). Treatment effects
are inferred if the average change in the treatment group
that has received the intervention of interest (e.g., a novel
therapy) between the two measurements is significantly
larger (or smaller) as compared to the average change in
the control group that received no intervention (e.g., a
placebo) or an alternative intervention (e.g., an estab-
lished therapy). Properly designed RCTs strengthen
causal attributions of observed changes to intervention
effects because they can account for three potential
sources of bias, that is, time effects, selection effects, and
time-selection interaction effects.2,3 Thus, RCTs allow
controlling for natural changes taking place between a
pretest and posttest (e.g., maturation, fatigue) that are
not caused by the intervention. If time effects are ignored,
natural changes might be erroneously interpreted as
treatment effects, despite the treatment having no rele-
vant effect on the outcome. Simpler designs such as pre-
post designs without a control group typically cannot
control for these time effects. Selection effects can occur
if non-random groups are compared because treatment
and control groups exhibit important differences in the
outcome at the pretest. If selection effects are ignored,
posttest differences between groups might be erroneously
interpreted as treatment effects although they merely
reflect preexisting differences between groups. In RCTs,
effective randomization to treatment and control groups
typically controls for known and unknown confounders

and, thus, ensures that groups at the pretest are compara-
ble. Still, differential attrition between pre- and posttest
can lead to nonequivalent groups at posttest, simply
because response rates depend differentially on the mea-
sured outcome for the two groups. Simpler designs such
as posttest comparisons between treatment and control
groups that do not acknowledge pretest information often
cannot control for the effects of these time-selection
interactions. Finally, in within-subjects designs such as
RCTs, each individual can be considered their own con-
trol which increases the power of statistical tests and the
precision of inferences.3 Therefore, RCTs are often con-
sidered the best practice for studying causal relationships
in prevention and intervention research.1,2

Both in clinical and educational research, meta-
analyses of RCTs are often considered the most reliable
evidence for intervention efficacy, particularly in areas
with a limited number of participants per trial or conflict-
ing evidence. Consequently, these meta-analyses not only
receive a lot of attention from the scientific community
but are also used by stakeholders that base their decisions
on scientific evidence. A prominent example is a recent
discussion on the efficacy and safety of umifenovir for the
treatment of the coronavirus disease which has initially
been advocated as an effective treatment but turned out
ineffective in a quantitative meta-analysis of the available
RCTs.4 Although combining the raw data of multiple
studies in individual participant meta-analyses is prefera-
ble from a methodological point of view,5 most psycho-
logical studies do not provide the respective raw data.6,7

Particularly, in clinical research often legal restrictions or
ethical considerations prevent sharing the raw data (see
Reference [8], for a potential remedy). Therefore, meta-
analyses of summary statistics are the only viable solu-
tion in many situations.

Because reporting practices in psychology and other
behavioral sciences often do not follow prevalent
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recommendations,9 necessary information to adequately
aggregate meta-analytic results is often missing. The
current manuscript evaluates different strategies for
meta-analyses of RCTs with a focus on situations when
information to calculate the sampling variances of
the effect sizes is missing. To this end, we propose to
respecify the traditional univariate meta-analysis as a
multivariate model that acknowledges dependent effects
using robust variance estimation10,11 or a three-level
meta-analysis.12,13 We present a comprehensive simula-
tion study that contrasts these approaches under different
realistic conditions to derive recommendations for future
meta-analytic practice.

2 | META-ANALYSES OF
STANDARDIZED MEAN
DIFFERENCES IN RCTs

In the following, we summarize the prevalent method of
synthesizing RCT effect sizes in meta-analytic research.
Moreover, we will emphasize shortcomings in this
approach that make its application infeasible in many
situations.

2.1 | The RCT effect size

The conventional effect size for RCTs with continuous
outcomes is the difference in the standardized mean
change between the pretest and posttest for the treat-
ment and control groups. Let us assume that the pretest
and posttest scores for the metric outcome in both
groups (T= treatment group, C = control group) follow a
bivariate normal distribution in the population with
means μT,pre and μC,pre at the pretest and μT,post and μC,post
at the posttest. If we further assume a common variance
σ2 for both groups at the time points and a common cor-
relation ρ between pre- and posttest scores, then the stan-
dardized mean change in the population is given by
δg ¼ðμg,post�μg,preÞ=σ in each group g¼ T,Cf g. The RCT
effect size for the difference in the standardized mean
change is

Δ¼ δT �δC ¼
μT,post�μT,pre
� �

� μC,post�μC,pre
� �

σ
ð1Þ

with the corresponding sample estimate for Δ as

bΔ¼ c dfð Þ � MT,post�MT,pre
� �� MC,post�MC,pre

� �
SDpre

: ð2Þ

In (2), Mpre and Mpost are the pretest and posttest
means in the two groups, while SDpre is the pooled pre-
test standard deviation

bσ¼ SDpre ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT �1ð Þ �SD2

T,pre� nC�1ð Þ �SD2
C,pre

nT þnC�2

s
ð3Þ

given the pretest standard deviations SDT,pre and SDC,pre

and respective sample sizes nT and nC. Although differ-
ent estimators for bσ have been proposed that either use
independent estimates bσg for both groups14 or also incor-
porate the posttest variance,15 simulation research sug-
gests that the pooled pretest SDs result in the most
precise estimates of the sampling variances of bΔ.16
Finally, c dfð Þ is a bias adjustment function to correct
for a small sample bias with degrees of freedom (df ) of
nT þnC-2 and the gamma function Γ xð Þ17,18:

c dfð Þ¼
ffiffiffiffiffi
2
df

s
�

Γ df
2

� �
Γ df �1ð Þ=2½ � ≈ 1� 3

4 �df �1
ð4Þ

The asymptotic distribution of bΔ in (2) has been
derived as16

Var bΔ� �
¼ c dfð Þ2 �2 � 1�ρð Þ � nT þnC

nT �nC

� �
� nT þnC�2

nT þnC�4

� �
�

1þ nT �nC

nT þnC
� Δ2

2 � 1�ρð Þ
� �

�Δ2:

ð5Þ

2.2 | The random-effect
meta-analytic model

If RCT effect size estimates are available from multiple
samples, meta-analytic methods can be used to combine
them to infer an average true effect bΔ across samples.
Consider K samples to contribute effect sizes for the
meta-analysis. Let bΔk denote the effect size estimate of
Δk from the kth sample with k� 1, :::,Kf g and
Var bΔk

� �
¼ vk as the corresponding sampling variance.

Then, the univariate random effect model can be written
as a multilevel model, such that13

bΔk ¼Δþukþ ek

uk �N 0;τ2
� �

ek �N 0;vkð Þ
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Cov ui,uj
� �¼Cov es,etð Þ¼Cov ui,esð Þ

¼ 0;8 i≠ j^ s≠ tð Þwith i, j,s, t� 1,…,Kf g ð6Þ

where the sampling errors ek ¼ bΔk�Δk are assumed to
be uncorrelated with known variance vk.uk represents
the deviation of a sample-specific true effect from the
average true effect and τ2 gives the heterogeneity esti-
mate of the distribution of the true effects. If uk ¼ 0 for all
samples, (6) simplifies to a fixed-effect model. Because
the assumption of no between-sample heterogeneity is
rarely tenable in practice,19 we will focus on the random-
effect model. Although different estimators have been
suggested for the random effects variance τ2, restricted
maximum likelihood (REML) has shown the most prom-
ising results for continuous outcomes under different
conditions (see Reference [20] for a review). The average
true effect Δ in (6) is typically derived as a weighted least
square estimate given by bΔ¼Pk wk � bΔk

� �
=
P

k wk

with wk ¼ 1= vkþbτ2� �
.21

2.3 | Unresolved challenges in RCT
meta-analyses

Morris16 advocated the use of an effect size in RCT meta-
analyses which is based on the pooled pretest standard
deviation (see Reference [3]) because it “provides an
unbiased estimate of the population effect size” (p. 24)
and has a smaller sampling variance than competing esti-
mates. However, the sampling variance estimator in (5)
relies on the pre-post correlation. While means and stan-
dard deviations of the pretest and posttest scores and
sample sizes are routinely reported in scientific publica-
tions, the correlation between pretest and posttest scores
is seldom found. In fact, it is not uncommon that not a
single primary study included in a meta-analysis informs
about the respective correlation.22 Therefore, these corre-
lations are often imputed by a constant value such as
0.70,23 0.60,24 or 0.50, thus, mimicking an independent
groups design.3 However, empirical effect size distribu-
tions of pre-post correlations in different fields highlight
that these correlations can vary substantially depending
on the domain and the studied effect.25,26 For example,
Taylor and colleagues26 found pooled pre-post correla-
tions for different types of training effects that varied
between 0.43 and 0.82. Thus, using a specific value for
the unknown pre-post correlation might be misleading
and reduce the efficiency of the effect size estimator in
(6) (see Reference [27] for similar concerns in the context
of multivariate meta-analyses). Even if pre-post correla-
tions are available from primary studies, it might not be
advisable to use sample estimates for the population

correlation ρ required in (5), because especially in small
samples with less than 250 participants that dominate
RCT research,28 sample correlations are highly variable
and a poor estimate of the population value.29

3 | A MULTIVARIATE
META-REGRESSION APPROACH
FOR RCTs

To overcome the problem of missing pre-post correlations,
we propose modeling the RCT effect as independent group
effect sizes in a meta-analytic regression framework. To do
so, the RCT effect size in (2) is restructured as

bΔ¼ c dfð Þ � MT,post�MC,post
� �� MT,pre�MC,pre

� �
SDpre

¼ c dfð Þ � MT,post�MC,post
� �

SDpre
� c dfð Þ � MT,pre�MC,pre

� �
SDpre

¼bδpost�bδpre ð7Þ

and, thus, expressed as the difference between two inde-
pendent group effect sizes for the pretest and the posttest.
Then, the sampling variances of the effect size bδt at each
measurement occasion t (0= pretest, 1= posttest) do not
rely on the pre-post correlation, but correspond to (5)
when setting ρ to 0.5.17 The difference in (7) can be for-
malized in a multivariate meta-regression model30 where
each sample contributes two effect sizes (bδpre and bδpost) as

bδkt ¼ β0þβ1 � tþuktþ ekt

ukt �N 0;T2
� �

ekt �N 0;vktð Þ

Cov uim,ujn
� �¼ 0; 8 i≠ jð Þwith i, j� 1,…,Kf g andm,n� 0,1f g

Cov uim,ejn
� �¼ 0with i, j� 1,…,Kf g andm,n� 0,1f g

Cov eim,ejn
� �¼ 0; 8 i≠ jð Þwith i, j� 1,…,Kf g andm,n� 0,1f g

Cov ek0,ek1ð Þ¼ ρk � v0:5k0 � v0:5k1 with k� 1,…,Kf g ð8Þ

with bδkt as the independent group effect size in sample k
at measurement occasion t (0= pretest, 1= posttest) and
ekt as the sampling error residual with known variance
vkt ¼Var bδkt� �

. The regression coefficient β1 represents

4 GNAMBS and SCHROEDERS
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the difference in effect sizes between the pretest and post-
test and, thus, estimates the average true effect Δ across
samples as in (6), while the intercept β0 represents the
mean difference at the pretest (i.e., a selection effect).

The time-specific effects ukt within a sample are
jointly distributed, in the most general case, with an

unstructured variance–covariance matrix T2 ¼ τ20 τ01
τ01 τ21

" #
,

thus, assuming different between-study heterogeneities at
pre- and posttest. Then, τ20þτ21�2 �τ01 corresponds to the
total between-study heterogeneity for the RCT effect size,
that is, τ2 in (6).1 However, because the variance–
covariance structure of the time-specific effects is
rather complex, more restrictive specifications might
be more appropriate in practice. For example, properly
designed RCTs should result in no group differences at
the pretest because respondents are randomized to the
treatment and control groups (see Reference [31] for an
overview of different approaches). Therefore, if the
assumption of no (or negligible) pretest imbalance
seems justified (which often is the case, see References
[28,32]), β0 as well as τ20 and τ01 in T2 could be con-
strained to 0; this would reduce the total between-study
heterogeneity to τ2 ¼ τ21. Moreover, because RCT meta-
analyses often include rather few primary studies with
small samples,33 the covariance in T2 might be some-
times practically non-identifiable,34,35 thus, requiring
modeling independent variances at pre- and posttest. In
practice, proper constraints on the variance structure can
be identified by comparing models with different random
effects structures, for example, using likelihood ratio
tests.36

Because each sample contributes two effect sizes to
the multivariate meta-analytic model in (8), the bδk� are
no longer independent but exhibit an unknown within-
sample correlation ρk. However, information on the exact
value of ρk is not essential because dependent effects can
be acknowledged using robust variance estimation
(RVE10,11) or extending (8) to a three-level model
(TLM12,13) which do not rely on a known correlation.

3.1 | Robust variance estimation

RVE corrects the standard errors of the model parameters
estimated in (8) without requiring information on the
exact variance–covariance structure for the dependent
effect sizes within a sample. This is achieved by
specifying a “working model” for the dependence struc-
ture such as using a common correlation ρk of 0.8 within
samples.10 Then, estimates of the study-specific covari-
ance matrices are empirically derived using weighted

least squares as the products of the regression residuals
(see Reference [11], and the Appendix A). Although each
study-specific estimate might be rather imprecise, their
average across multiple samples is sufficiently precise
when the number of samples is large. However, small-
sample corrections can be incorporated into the
variance–covariance estimator to yield approximately
unbiased standard errors when the number of studies is
small.37,38 Importantly, although the robust standard
errors are unbiased even if the “working model” is not
correctly specified, the precision of the resulting esti-
mates increases the closer the true dependency structure
is approximated.

3.2 | Three-level meta-analysis

TLM extends the model in (8) by an additional random
effect uk. Thus, the total random variance is split
into two components, the between-sample variation uk
and the residual within-sample variation ukt in true
effects:

bδkt ¼ β0þβ1 � tþuktþukþ ekt

ukt �N 0;τ2w
� �

uk �N 0;τ2b
� �

ekt �N 0;vktð Þ

Cov uim,ujn
� �¼ 0; 8 i≠ jð Þwith i, j� 1,…,Kf g andm,n� 0,1f g

Cov uim,uinð Þ¼ 0; 8 m≠ nð Þwith i� 1,…,Kf g andm,n� 0,1f g

Cov uim,uj
� �¼ 0with i, j� 1,…,Kf g andm� 0,1f g

Cov uim,ejn
� �¼ 0with i, j� 1,…,Kf g andm,n� 0,1f g

Cov ui,ejn
� �¼ 0with i, j� 1,…,Kf g andn� 0,1f g

Cov eim,ejn
� �¼ 0; 8 i≠ j_m≠ nð Þwith i,

j� 1,…Kf g andm,n� 01f g ð9Þ

Then, the total between-study heterogeneity for the
RCT effect size, that is, τ2 in (6), corresponds to 2 � τ2w.2
Moreover, the TLM in (9) assumes independent sampling
errors ekt . Thus, instead of specifying correlated errors,
the TLM models correlated true effects within samples.
This assumption is clearly violated when multiple effect
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sizes are based on the same sample. Additionally, the
TLM implies a similar degree of between-sample hetero-
geneity for all effect sizes.39 Although these assumptions
might not be tenable in empirical applications, Van den
Noortgate and colleagues13,40 showed that the three-level
random effect structure can account for within-sample
dependencies reasonably well when the number of effect
sizes per sample are small and the random variances are
large. Therefore, models with multiple random effects
are increasingly used in applied meta-analytic research
(see Reference [41] for a review). However, TLMs tend to
suffer from convergence issues when the number of sam-
ples is small and show increased parameter bias when
pooling outcome-specific effect sizes.42

4 | OBJECTIVES AND RESEARCH
QUESTIONS

As outlined above, different approaches are currently in
use to pool RCT effect sizes across multiple samples.
Hitherto, little is known to what degree and under which
conditions the use of an ad-hoc substitute for the
unknown pre-post correlation might distort the resulting
meta-analytic estimates. Additionally, the proposed mul-
tivariate approach could improve current practice by
modeling the RCT effect as dependent effects in line with
current state-of-the-art approaches to model dependen-
cies in meta-analytic research.11,42 Therefore, we present
a comprehensive Monte Carlo simulation that evaluated
the precision of different meta-analytic methods for pool-
ing RCT effect sizes under various realistic conditions.
Based on these results, we provide recommendations for
future meta-analytic practice.

5 | METHOD

5.1 | Meta-analytic models for RCT
effects

The simulation compared three univariate random-effects
meta-analyses of RCT effect sizes and two multivariate
random-effects meta-analyses of independent group effect
sizes. As a point of comparison, we also included a univar-
iate meta-analysis of standardized differences in posttest
means that ignored any pretest information. All models
used a REML estimator with a maximum number of 1000
iterations for the optimizer to converge. Although REML
results in slightly negatively biased heterogeneity estimates
in univariate meta-analyses, it is less biased than maxi-
mum likelihood estimation43 and also compares favorably
to alternative estimators as reviewed by Veroniki and

colleagues.20 More importantly, REML is applicable for
univariate as well multivariate meta-analyses.

5.1.1 | Univariate meta-analyses of RCT
effect sizes

The reference approach (UMA-S with S for sample) con-
sisted of inverse-variance weighted random-effects meta-
analyses for which all primary studies reported the required
sample statistics to calculate the effect size in (2) and its
sampling variance in (5). In (5), the sample effect size d
was used for Δ and the sample pre-post correlation r was
used for ρ. The second approach (UMA-P with P for pop-
ulation) also assumed that all primary studies reported
the required sample statistics, but since (5) requires the
population value for the pre-post correlation, a two-step
approach was adopted. First, a random-effects meta-
analysis (REML estimation) pooled the inverse variance-
weighted Fisher's Z transformed pre-post correlations
that were reported in the primary studies to derive a
pooled pre-post correlation bρ. Then, the pooled pre-post
correlation was used in (5) for the calculation of the sam-
pling variances of the RCT effect sizes. It was assumed that
the pooled pre-post correlation would more precisely repre-
sent the population correlation ρ required in (5), particu-
larly in small samples.29 For the third approach (UMA-I
with I for imputation), we simulated meta-analyses for
which neither primary study reported the necessary pre-
post correlations. Therefore, the sampling variances in (3)
were calculated by imputing a constant value of either 0.5
or 0.8 for the unknown correlation ρ in the population (5).
For all univariate meta-analyses, standard errors and 95%
confidence intervals were adjusted following Knapp and
Hartung44 for better control of type I error rates in small
samples. Prediction intervals (PI) were calculated as

PI ¼ bΔ� t 1,k�2ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE bΔ� �2

þbτ2r
ð10Þ

where SE bΔ� �
is the standard error of the estimated

pooled effect bΔ, bτ2 is the estimated between-sample vari-
ance, t 1,k�2ð Þ is the 97.5 percentile of the t-distribution,

and k gives the number of samples.45

5.1.2 | Multivariate meta-analyses of
pre- and posttest effect sizes

Two independent group effect sizes (dpost and dpred) with
their sampling variances were calculated for each simu-
lated sample. Then, the pooled RCT effect was estimated

6 GNAMBS and SCHROEDERS
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using the regression framework in (8). The first approach
adopted a robust meta-analytic model (i.e., RVE) using
(8) as a working model and assuming correlated errors of
either 0.5 or 0.8. Then, cluster-robust variances with a
bias-reduced linearization correction were calculated for
the regression parameters to account for heteroscedasti-
city and unmodeled errors.37,46 Moreover, confidence
intervals incorporated the Satterthwaite correction for
the degrees of freedom which has been shown to lead to
more appropriate coverage rates of confidence intervals.37

The second approach also pooled two independent group
effect sizes but acknowledged the dependencies between
effects by estimating a three-level meta-analytic model
(TLM) as given in (9). Thus, the random variance terms
modeled effect sizes nested within studies.12,13 For all
multivariate meta-analyses, prediction intervals were cal-
culated following (10) replacing bΔ with bβ1 from (8) or (9)
and bτ2 with the total between-study heterogeneity.

5.1.3 | Univariate meta-analyses of posttest
effect sizes

As the most basic strategy for analyzing treatment effects,
inverse-variance weighted random-effects meta-analyses
pooled the posttest effect sizes without considering
the pretest (UMA-B with B for basic). The effect size for
the standardized mean difference between independent

groups was calculated as bδpost ¼ c dfð Þ � MT,post�MC,postð Þ
SDpost

with

SDpost given by (3) using the posttest standard devia-
tions.17,18 The sampling variance followed (5) when set-
ting ρ to 0.5.17 Again, standard errors and confidence
intervals were adjusted following Knapp and Hartung.44

Prediction intervals were calculated as in (10).

5.2 | Experimental design

The simulation aimed to mimic typical conditions of meta-
analyses of pre-post intervention studies with continuous
outcomes that are often encountered in evaluation studies
across many disciplines such as clinical (e.g., psychotherapy)
and educational research (e.g., teaching) or personnel psy-
chology (e.g., employee training). The present study manipu-
lated seven design factors to evaluate their impact on the
simulation results (see Table 1). These included the number
of effect sizes in a meta-analysis (K), the average samples
size per effect size (n), the true change in the treatment
group (Δ), the true pre-post correlation (ρ), the true post-
test variance in the treatment group (Φ), the between-
study heterogeneity (τ2), and the presence of attrition
bias. This resulted in a 5 (effect sizes)� 3 (sample

sizes)� 3 (true changes)� 3 (true correlations)� 2 (true
posttest variances)� 2 (between-sample hetero-
geneities)� 2 (attrition biases) fully crossed simulation
design.

5.2.1 | Number of effect sizes per
meta-analysis

Meta-analyses in psychology and education often com-
bine between 10 and 200 effect sizes.47,48 Meta-analyses
on training studies that often adopt RCT designs are usu-
ally located at the lower end of this distribution, regard-
less of the discipline. For example, Collins and Holton49

reported meta-analytic effects on the effectiveness of
managerial leadership development programs that
included between 6 and 23 samples. Similarly, various
meta-analyses on behavior modeling training effects for
different outcomes were based on 14 to 66 effect sizes,
with most of them including less than 40.26 In meta-
analyses of clinical trials, the number of pooled effect
sizes is even substantially smaller. In psychology, meta-
analyses on the effectiveness of clinical psychology treat-
ments include a median of 18 studies.50 For medical tri-
als, a review of the Cochrane Database of Systematic
Reviews found that of nearly 3000 meta-analyses on men-
tal health, 90% pooled results from up to 10 studies, while
half of them included no more than three studies.28

Therefore, the number of effect sizes per meta-analysis
was set to either 3, 5, 10, 20, or 40.

TABLE 1 Experimental conditions and constant settings for

simulation.

Experimental condition Values

Number of effect sizes per meta-analysis (K) 3, 5, 10, 20, 40

Average sample size in meta-analysis (n) 40, 80, 120

True change in the treatment group (Δ) 0.20, 0.40, 0.80

True pre-post correlation in treatment and
control groups (ρ)

0.20, 0.50, 0.80

True posttest variance in the treatment
group (Φ)

1.0, 1.5

Between-sample heterogeneity (τΔ) 0.10, 0.30

Attrition bias 0.00, 0.05

Constant settings Value

Between-sample heterogeneity of pre-post
correlation (τρ)

τρ � min{half-N
(0, 0.25), 0.5}

True change in control group 0.00

True pretest variances in treatment and
control groups

1.00

True posttest variance in control group 1.00
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5.2.2 | Average sample size in primary
studies

Sample sizes of primary studies in meta-analysis differ
largely depending on the setting (e.g., educational, clinical,
personnel) and the specificity of the group (e.g., students
with learning disabilities, patients with Parkinson's disease,
team leaders). For example, Taylor and colleagues26

reported a mean sample size (including control and treat-
ment group) in meta-analyses of training studies of
37 (Min = 5, Max = 271), which was similar to meta-
analyses in clinical psychology.50 In contrast, the above-
mentioned review of the Cochrane database28 found a
median sample size of RCTs on mental health ofMdn = 63
with the 25th and 75th percentiles at 36 and 165. Therefore,
the average sample size per effect size (including control
and treatment group) was set to either 40, 80, or 120. How-
ever, sample sizes in psychological meta-analyses are often
positively skewed.51,52 Therefore, we did not simulate con-
stant sample sizes for a given meta-analysis, but used three
vectors, [22, 26, 28, 30, 94], [62, 66, 68, 70, 134], and [102,
106, 108, 110, 174] that each exhibited a Pearson skewness
of 1.464 but different means (which is analogous to the
approach of S�anchez-Meca & Marín-Martínez51). These
vectors were replicated k/5 times in a given meta-analysis
to meet the total number of simulated samples. The sam-
ple sizes in the treatment and control groups were equal.

5.2.3 | True change in the treatment group

Lipsey and Wilson48 found a median standardized differ-
ence (Cohen's d) in meta-analyses of psychological treat-
ment effects of about 0.47. However, meta-analyses of
training studies also reported, depending on the observed
outcome, pooled effects that reached up to 1.00.26 In con-
trast, clinical studies often observe more modest effect
sizes. A review of more than 100,000 clinical trials con-
ducted between 1975 and 2014 showed that—independent
of the year of study—the average effect is about 0.20.53

Educational studies with randomized designs even pro-
duce average effects of only about 0.10 to 0.16.54,55 There-
fore, the standardized mean change in the treatment
group was set to either 0.20, 0.40, or 0.80 representing
small, medium, and large effect sizes. In the control group,
a standardized mean change of 0.00 was assumed.

5.2.4 | True pre-post correlation

Pooled pre-post correlations in training studies typically fall
between 0.43 and 0.82.26 In various meta-analyses of psychi-
atric RCTs the median of the pooled pre-post correlations

was 0.36 with the 25th and 75th percentile amounting to 0.22
and 0.58. Negative correlations were uncommon.24 There-
fore, we used pre-post correlations of either 0.20, 0.50, or 0.80
that were identical in the treatment and control groups.

5.2.5 | True posttest variance in
treatment group

The effect size for RCT designs assumes homogenous vari-
ances at pre- and posttest as well for treatment and control
conditions.16 However, if participants are differently affected
by the treatment, some of them will improve more strongly
while others will improve less. Consequently, the posttest
scores will exhibit a larger variance as compared to the con-
trol group or the pretest. For example, in a meta-analysis of
training studies, the posttest standard deviations increased
by about 7.6% in the treatment group.56 Similarly, a review of
meta-analysis of clinical trials reported that, on average,
empirical pre-post correlations for treatment groups were
aboutΔr = 0.20 smaller than the respective pre-post correla-
tions in the control groups, thus, reflecting larger posttest
variances in the treatment groups.24 On the other hand, often
meta-analyses do not identify pronounced treatment hetero-
geneity, thus, making the assumption of homogeneous vari-
ances plausible for many applications.57,58 To study potential
effects of heterogeneous variances, we set the posttest vari-
ance in the treatment group to either 1.0 or 1.5 times the pop-
ulation variance. Although a variance increase by 50% seems
unrealistic in most cases, it was chosen as a worst-case sce-
nario (see alsoMorris16 for a similar condition).

5.2.6 | Between-study variances

Van Erp and colleagues59 reviewed heterogeneity esti-
mates in over 700 psychological meta-analyses and found
a median between-study heterogeneity of τΔ = 0.20
(IQR= [0.10, 0.33]) for meta-analyses of standardized
mean differences. A similar review by Linden and Höne-
kopp60 identified a slightly larger mean between-study
heterogeneity across 150 meta-analyses from cognitive,
organizational, and social psychology of τΔ = 0.30,
whereas multiple close replications were less variable
with a mean τΔ of 0.09. Therefore, we used a between-
study heterogeneity in (6) of either 0.10 or 0.30, thus,
reflecting small and large heterogeneity, respectively.

5.2.7 | Attrition bias

Longitudinal studies often suffer from sample attrition
because not all participants randomized to the control and

8 GNAMBS and SCHROEDERS

 17592887, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1673 by O
tto-Friedrich-U

niversität, W
iley O

nline L
ibrary on [27/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



treatment group at the pretest also participate in the post-
test measurement. In the past, average attrition rates
between 13% and 19% have been reported for medical tri-
als and educational interventions, respectively.61,62 Differ-
ential attrition for treatment and control groups was
typically small.61,63 Importantly, attrition is primarily a
concern if it introduces bias because the likelihood of non-
participation is associated with pre- and posttest scores.
Bias is sometimes considered problematic if it exceeds a
threshold of jdj= 0.05.64 However, a recent examination
of attrition bias in 10 educational RCTs found only a
mean absolute bias of 0.026.65 Similarly, the average bias
in medical RCTs was about 0.02, albeit attrition increased
the between-study variance.66 Thus, attrition bias might
not be a widespread threat to the validity of RCTs. Never-
theless, we considered a situation where RCTs exhibited
an average attrition bias of d= 0.05 and compared the
respective results to a condition without bias.

5.3 | Data simulation and model
estimation

For each experimental condition outlined above, the
pooled treatment effect was calculated using different
random-effects meta-analyses from randomly generated
samples. The entire simulation procedure for a given con-
dition followed seven steps:

1. For a given sample k included in a meta-analysis, the
true change in the treatment group Δk was randomly
drawn from a normal distribution N Δ,τ2Δð Þ with Δ and
τ2Δ representing the true change and between-sample
heterogeneity depending on the experimental condition.

2. For a given sample k included in a meta-analysis, the
true pre-post correlation ρk was randomly drawn from a
normal distribution as tanh N tanh-1 ρkð Þ,τ2ρ

� �� �
with

tanh-1 xð Þ representing the inverse hyperbolic tangent
function, thus, giving the Fisher's Z transformed true
pre-post correlation ρ depending on the experimental
condition, and τ2ρ giving the between-sample heteroge-
neity. For a given meta-analysis, τρ was derived by a
random draw from a half-normal distribution min{half-
N(0, 0.25), 0.5}. This closely reproduced the empirical
distribution of between-sample heterogeneities identi-
fied in over 700 psychological meta-analyses of correla-
tion coefficients that gave a median of τρ = 0.16 (IQR=

[0.08, 0.22]).59

3. For the treatment group in sample k, (n/2)/0.8 data
points representing the pre- and posttest scores as well
as a standard normally distributed attrition indicator
were randomly drawn from a multivariate normal

distribution N

0

Δk

0

264
375, 1 ρk 0:15

ρk Φ 0:15

0:15 0:15 1

264
375

0B@
1CA, with n

and Φ representing the total sample size and posttest
variance depending on the experimental condition. The
covariances for the attrition indicator were identified by
trial and error to produce an average attrition bias of
about 0.05 for an attrition rate of 20%. In the condition
without attrition bias, the first n/2 simulated rows were
retained, whereas in the condition with attrition bias,
the n/2 rows with the lowest values on the attrition indi-
cator were retained. In this way, attrition bias did not
affect the manipulated sample size.

4. For the control group in sample k, n/2 data points
representing the pre- and posttest scores were ran-
domly drawn from a multivariate normal distribution

N
0

0

	 

,

1 ρk
ρk 1

	 
� �
with n representing the total sam-

ple size depending on the experimental condition.

5. In each sample, one RCT effect size and two
independent group effect sizes with their sampling var-
iances were calculated according to (2, 5).

6. Steps 1 to 5 were repeated to generate K samples for a
given meta-analysis according to the experimental
condition.

7. The different meta-analytic models were applied to
the simulated samples to derive the pooled effect bΔ,
the heterogeneity estimate τ2, a 95% confidence inter-
val for bΔ, and a 95% prediction interval for bΔ.
These steps were replicated 1000 times for each exper-

imental condition. By default, multivariate meta-analyses
used a bound constraint quasi-Newton optimizer
(nlminb),67 but in case of a convergence failure resorted
to the Nelder and Mead68 method. Replications for which
a meta-analytic model still failed to converge were dis-
carded and replaced with a valid case. All analyses were
conducted in R version 4.2.2 with the packages metafor
version 3.8.1 and clubSandwich version 0.5.8.69,70

5.4 | Performance criteria

The accuracy of an estimator bθ was compared using the
average parameter bias and root mean squared error
(RMSE) which were evaluated for the mean RCT effect bΔ
and the heterogeneity estimate τ2:

Bias bθ� �¼E bθ�θ
� �

ð11Þ
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RMSE bθ� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E bθ�θ
� �2	 
s

ð12Þ

For both criteria, values close to 0 indicate preferable
estimators. However, because RMSE can be simplified to

RMSE bθ� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias bθ� �2þVar bθ� �	 
s

, a more biased

estimator might be more efficient if it yields a con-
siderably smaller variance. Moreover, the coverage
rates of the 95% confidence intervals were calculated
as the percentage of replications for which the true
effect Δ fell within the confidence interval. Similarly,
the coverage rates of the 95% prediction intervals
were compared for the different estimators to study
the precision that treatment effects in hypothetical
future samples could be predicted. These coverage
rates were calculated by randomly drawing a value
from N Δ,τ2Δð Þ and determining the percentage of repli-
cations for which this true effect fell within the predic-
tion interval. Accurate confidence and prediction interval
estimators should exhibit a nominal probability of 95%.
Finally, we also calculated the widths of the 95% confi-
dence and prediction intervals.

The Monte Carlo error (MCE) for each performance
criterion was estimated using the jackknife method.71 Let
R represent the number of replications with
X¼ X1,X2, :::,XRf g giving the estimated replicates from
which the performance criterion θ Xð Þ (e.g., bias, RMSE,
coverage rate) is calculated. If X-r with r � 1,…,Rf g repre-
sents the subset of X without the rth replicate, then the
MCE for θ is given as

MCE θð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1
R

�
XR
r¼1

θ X�rð Þ� 1
R
�
XR
s¼1

θ X�sð Þ
 !2

vuut :

ð13Þ

The MCE allows quantifying the precision for each
performance criterion to compare differences across dif-
ferent simulation conditions. However, because of the
large number of replications used in our simulation, the
obtained MCEs were rather small. Thus, we refrain from
reporting confidence intervals but provide the median
and maximum MCE for each performance criterion.

6 | RESULTS

The simulation results are summarized separately for the
different performance criteria. Given the large number of

experimental conditions that resulted in 1080 unique
cells, the results presented in the following tables and fig-
ures refer to the condition for a medium treatment effect
(Δ= 0.4) with homogenous posttest variances (Φ¼ 1:0).
Moreover, we will focus on the conditions without attri-
tion bias for the different meta-analyses of pre-post
effects; specific results for UMA-B or attrition bias will be
selectively pointed out in the text (full results are avail-
able in the online material). Moreover, factorial analyses
of variance (ANOVA) evaluated the source of the vari-
ability in the performance criteria to determine which
combinations of experimental conditions produced stron-
ger effects (in terms of η2) and warranted detailed scru-
tiny (see Table 2). Again, these analyses were limited to
the different estimators of pre-post effects but did not
include the meta-analyses of posttest effect sizes.

6.1 | Convergence rates

For all estimators and experimental conditions, the esti-
mated models converged successfully after 1000 itera-
tions. However, for about 1.7% of the TLMs the default
optimizer (nlminb)67 failed to converge requiring the use
of an alternative optimization algorithm.68 RVEs did not
exhibit similar convergence problems.

6.2 | Average bias and root mean
squared error of fixed-effect estimators

The Monte Carlo errors for the average bias in Δ and
RMSE were negligible in all conditions
(Mdn= 0.003/0.002, Max= 0.012/0.009), thus, allowing
for valid comparisons of the respective point estimates.
Factorial analyses of variance for the simulation condi-
tions showed that the main effect of the meta-analytic
method explained about 16.7% of the variance in the aver-
age bias (see Table 2). Moreover, this effect was qualified
by small two-way interactions with the average sample
size (η2= 5.3%) and the true change in the treatment group
(η2= 3.5%). Figure 1 summarizes the average bias by aver-
age sample size, number of studies, and true pre-post cor-
relation for the conditions with a small and large between-
sample heterogeneity. These results show that all estima-
tors were slightly negatively biased at smaller average
sample sizes. Regarding the meta-analytic method, the
largest bias was observed for UMA-S which used sample-
specific pre-post correlations for the calculation of the
RCT sampling variances. In contrast, UMA-P which
pooled the pre-post correlations before calculating the
sampling variances of the RCT effects exhibited a smaller
bias and performed comparably to the different
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approaches that did not make use of the sample pre-post
correlations (UMA-I, RVE, TLM). The negative bias was
more pronounced for smaller average sample sizes or
larger true effects (see Figure S1 in the supplement mate-
rial), whereas the other factors had no substantial impact.
In these situations, RVE(r= 0.8) exhibited a slightly smaller
bias as compared to the other multivariate estimators.

UMA-B that ignored the pretest information exhib-
ited accuracies that were comparable to the meta-
analyses of pre-post effect sizes (see Figure 1), at least as
long as the posttest statistics were not systematically dis-
torted. Attrition bias led to noticeable larger biases that
reached up to �0.08 for larger true effects. Moreover,
posttest variance heterogeneity amplified this effect and
resulted in biases up to �0.15 to �0.11 for the conditions
with and without attrition bias, respectively (see
Figure 2). In contrast, meta-analyses using the pretest
information were not affected by attrition bias.

The RMSE of the different estimators was not affected
by the meta-analytic method (see Table 2). Although it
was strongly affected by the number of included primary
studies and grew larger for meta-analyses with a smaller
number of samples or larger between-sample heterogene-
ity (see Figure S2 in the supplement material), the meta-
analytic method did not produce different effects. This

suggests that despite the larger bias of UMA-S, the esti-
mator seems to exhibit a smaller variance. As a conse-
quence, it performed rather comparably in terms of
efficiency in relation to the other estimators.

6.3 | Average bias and root mean
squared error of random-effect estimators

The average bias for τ2 exhibited negligible Monte Carlo
error in all conditions (Mdn<0.002, Max= 0.014). How-
ever, bias was affected by the chosen meta-analytic
method (η2= 34.4%) including their two-way interactions
with the true pre-post correlation (η2= 6.7%) and the aver-
age sample size (η2= 6.6%). Figure 3 highlights that these
effects were primarily driven by UMA-I and RVE. Imput-
ing a constant pre-post correlation of 0.8 led to an overesti-
mation of the between-study heterogeneity in situations
where the true correlation was substantially smaller, par-
ticularly at small sample sizes when few primary studies
were available. In contrast, for UMA-I(r= 0.5) a mismatch
between the imputed and true correlation was less severe.
A highly similar pattern was observed for RVE that
resulted in a positive bias when using a correlation that
was larger than the true pre-post correlation. In contrast,

TABLE 2 Effect sizes for simulation conditions.

Condition
Bias
in Δ

RMSE
in Δ

Bias
in τΔ

RMSE
in τΔ

Coverage rate
for CI

Coverage rate
for PI

Width
of CI

Width
of PI

Method 16.7 0.0 34.4 5.1 38.1 15.4 0.1 0.8

K 2.4 67.7 4.6 31.4 6.5 22.0 79.8 82.9

n 30.3 9.5 7.3 15.4 0.7 0.4 5.1 1.2

ρ 0.1 5.6 19.8 10.3 0.0 7.1 2.3 1.5

Δ 18.5 0.1 0.0 0.0 1.6 0.0 0.0 0.0

Φ 0.0 0.4 2.2 0.9 0.0 1.4 0.2 0.2

τΔ 0.5 9.2 1.4 12.0 2.0 0.1 3.4 4.3

Bias 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Method � K 0.4 0.0 0.4 1.4 5.9 14.8 0.4 0.3

Method � n 5.3 0.0 6.6 2.4 4.2 0.3 0.0 0.1

Method � ρ 1.2 0.0 6.7 2.5 5.2 4.7 0.2 0.2

Method � Δ 3.5 0.0 0.1 0.0 1.0 0.1 0.0 0.0

Method � Φ 0.1 0.0 0.3 0.1 0.3 0.2 0.0 0.0

Method � τΔ 0.3 0.0 2.4 0.3 10.8 3.7 0.2 0.1

Method � Bias 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note: Presented are values of η2 for main effects and two-way interactions of the method factor based on analyses of variance including all possible higher-order
interactions up to the order of 3. Univariate meta-analyses of posttest effects were not included. Method = Meta-analytic method for RCT effect, K =Number
of samples, n=Average sample size, ρ =True pre-post correlation, Δ=True change in treatment group, τΔ =True between-sample heterogeneity, Φ=True
posttest variance in treatment group, Bias=Presence of attrition bias, RMSE=Root mean squared error, CI= 95% confidence interval, PI= 95% prediction
interval.
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TLM was less biased, except in conditions with large
between-sample heterogeneity. In these instances, TLM
resulted in slightly negative biases, particularly when the
true pre-post correlation was large. Similarly, UMA-B was
largely unbiased across most conditions. Posttest heteroge-
neity or attrition bias did not affect UMA-B or any of the
other estimators (see Figure S3).

The results for the RMSE of the examined estimators
(MCE: Mdn = 0.002, Max = 0.009) mirrored those for
the bias. Again, UMA-I(r = 0.8) and RVE(r = 0.8) showed
larger RMSE at small sample sizes and small pre-post
correlations, while UMA-I(r = 0.5) and RVE(r = 0.5) were

more efficient across all conditions (see Figure S4). In
contrast, TLM seemed as efficient as the univariate meta-
analyses. Again, posttest variance heterogeneity or attri-
tion bias did not affect these results.

6.4 | Coverage rates of confidence
intervals

The coverage rates of the 95% confidence intervals (MCE:
Mdn = 0.690, Max = 1.436) were substantially affected
by the meta-analytic method (see Table 2). The respective

FIGURE 1 Average bias of fixed-effect estimators for a medium treatment effect, homogenous posttest variances, and no attrition bias.

Detailed results are given in Tables S1 and S2 of the supplement material. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Average bias of fixed-effect estimators for a medium treatment effect, heterogeneous posttest variances, and attrition bias.

[Colour figure can be viewed at wileyonlinelibrary.com]
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main effect (η2 = 38.1%) was additionally qualified by
two-way interactions with the between-sample heteroge-
neity (η2 = 10.8%) and, to a lesser degree, also the pre-
post correlation (η2 = 5.2%), number of samples
(η2 = 5.9%), and average sample size (η2 = 4.2%). The
results in Figure 4 indicate that TLMs exhibited over-
coverage, particularly when the between-sample hetero-
geneity was small or the true pre-post correlations were
large. In contrast, the other estimators achieved coverage
rates close to the nominal 95%. Only at small sample
sizes, meta-analyses using the known pre-post correla-
tions (UMA-S) showed undercoverage in a few condi-
tions. Again, UMA-B which ignored the pretest

information exhibited substantially lower coverage rates
when attrition bias was present or posttest variances were
larger as compared to the pretest (see Figure S5). In the
most extreme cases, for example, for a large true effect,
the respective coverage rate fell as low as 1.3%.

6.5 | Coverage rates of prediction
intervals

The coverage rates of the 95% prediction intervals
(MCE: Mdn = 0.774, Max = 1.582) were substantially
affected by the meta-analytic method (η2 = 15.4%)

FIGURE 4 Coverage rates of 95% confidence intervals for a medium treatment effect, homogenous posttest variances, and no attrition

bias. Detailed results are given in Tables S5 and S6 of the supplement material. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Average bias of random-effect estimators for a medium treatment effect, homogenous posttest variances, and no attrition

bias. Detailed results are given in Tables S3 and S4 of the supplement material. [Colour figure can be viewed at wileyonlinelibrary.com]
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which was qualified by two-way interactions with the
number of samples (η2 = 14.8%). Across all conditions,
the best coverage rates were observed for UMA-I(r = 0.8)

and RVE(r = 0.8) with median coverage rates falling
between 92% and 97% (Min = 78%; see Figure 5).
However, at small between-sample heterogeneity and
large pre-post correlations these estimators resulted
in substantial undercoverage, while they were close to
the nominal level in the remaining conditions. Using
r = 0.5 for the unknown pre-post correlation led to more
heterogenous results with coverage rates falling as low as
39% and 49% for UMA-I(r = 0.5) and RVE(r = 0.5), respec-
tively. TLM exhibited severe undercoverage in most con-
ditions with a median coverage rate of 90%. Particularly,
at large between-sample heterogeneity and large pre-
post correlations coverage rates for TLM were rather low
(Min = 42%). Univariate meta-analyses using the known
pre-post correlations (UMA-S or UMA-P) showed rather
severe undercoverage in most conditions, falling as low
as 73% (Mdn = 90%). UMA-B exhibited coverage rates
comparable to the other univariate estimators. Attrition
bias or posttest variance heterogeneity amplified the
undercoverage for UMA-B but had negligible effects on
the other estimators (see Figure S6).

6.6 | Widths of 95% confidence and
prediction intervals

The widths of the 95% confidence intervals (MCE:
Mdn = 0.003, Max = 0.049) and the 95% prediction

intervals (MCE: Mdn = 0.014, Max = 0.304) were hardly
affected by the meta-analytic method (see Table 2). The
estimators and their interactions explained between 0.0%
and 0.8% of the variance in the performance indicator.
Thus, the examined meta-analytic estimators did not sub-
stantially affect the widths of these intervals.

7 | ILLUSTRATIVE DATA
EXAMPLE

To demonstrate the effect of the different approaches for
the calculation of pooled RCT effects, let us consider a
reanalysis of an existing RCT meta-analysis. This exam-
ple aims to demonstrate that the choice of the meta-
analytic method can matter and yield non-negligible vari-
ations in pooled RCT effects depending on the modeling
approach. Carl and colleagues72 evaluated the efficacy of
virtual reality exposure therapy for the treatment of vari-
ous anxiety-related disorders. The 14 RCTs on specific
phobias and social anxieties included in the reanalysis
provided mean pre- and posttest scores for a treatment
group and an untreated control group (waitlist) with the
respective standard deviations. As is common in clinical
research reports, none of the primary studies provided
the pre-post correlation. Therefore, we estimated the
pooled effects with two univariate meta-analyses of RCT
effect sizes that imputed a constant value of either 0.5 or
0.8 for the missing pre-post correlation. In addition, three
multivariate meta-analyses of independent group effect
sizes were conducted that either used RVE with working

FIGURE 5 Coverage rates of 95% prediction intervals for a medium treatment effect, homogenous posttest variances, and no attrition

bias. Results for values falling below 0.80 are not presented. Full are results are given in Tables S7 and S8 of the supplement material.

[Colour figure can be viewed at wileyonlinelibrary.com]
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models assuming correlations of either 0.5 or 0.8 between
the dependent effects or a TLM that accounted for depen-
dencies with an additional random effect. As a point of
comparison, we also report the results of a meta-analysis
of posttest effect sizes that ignore any pretest information
(Table 3).

As summarized in Table 3, the univariate meta-ana-
lyses of RCT effect sizes resulted in pooled point esti-
mates Δ between �1.06 and �1.02, depending on the
size of the imputed pre-post correlation. Similarly, the
multivariate meta-analyses exhibited effect estimates
around �1.06 to �1.04. In contrast, the meta-analysis of
posttest effect sizes identified a slightly smaller effect of
�0.96, thus, suggesting the presence of potential selection
or time-selection interaction biases. The precision of the
RCT effects was similar for all approaches except TLM
and resulted in 95% confidence intervals of comparable
widths. In contrast, the univariate meta-analysis of post-
test effects exhibited a substantially larger interval.

The between-sample heterogeneity was more strongly
affected by the meta-analytic estimator. The univariate
meta-analyses showed, on average, slightly smaller
between-sample heterogeneities as compared to the mul-
tivariate methods. Generally, the heterogeneity estimates
slightly increased when imputing larger pre-post correla-
tions or using larger correlations in the RVEs. As a result,
the prediction intervals varied to some degree between
the examined approaches leading to different conclusions
about hypothetical effects predicted for future studies.
For some estimators, the prediction intervals included
0, whereas for others they did not. In line with the simu-
lation results, the TLM estimated a substantially smaller
random effect and, consequently, a narrower prediction
interval. Thus, the choice of the meta-analytic method
affected the fixed effect estimate only modestly, but more
so the heterogeneity estimates.

8 | DISCUSSION

In many disciplines such as clinical, psychological, and
educational research, treatment or intervention effects
are of primary interest to evaluate, for example, the effec-
tiveness of novel therapies or training programs.72,73

Because individual studies might be affected by a multi-
tude of factors, meta-analyses try to consolidate the avail-
able evidence of multiple studies on a common topic by
estimating whether an intervention yields robust effects
in different settings to better understand the conditions
under which an intervention might be more or less effec-
tive. Meta-analyses rely on sample statistics to calculate
effect sizes in each sample. Unfortunately, relevant infor-
mation for these calculations is frequently unavailable
due to poor reporting practices in primary studies. Partic-
ularly the correlation between pre- and posttest scores
which is required for RCT meta-analyses is often missing.
As an ad-hoc solution, applied researchers frequently
impute a constant value for the missing correlation with-
out knowing how this might affect the pooled estimates.
Therefore, the present study evaluated different meta-
analytic estimators for the RCT effect. In addition to uni-
variate meta-analyses of RCT effect sizes with known or
imputed pre-post correlations, we also proposed two new
multivariate meta-regression approaches which capitalize
on recent advancements for the analysis of dependent
effects in meta-analyses.11,13 A comprehensive simulation
study evaluated the different analytic approaches under
different realistic conditions that are typically encoun-
tered in applied research. These analyses provided five
major results:

First, traditional univariate meta-analyses of RCT
effect sizes resulted in more biased point estimates as
compared to the other estimators and tended to underes-
timate the true effect, particularly when sample sizes

TABLE 3 Reanalysis of Carl et al.72

Δ

95% Confidence Interval

τ

95% Prediction Interval

LB UB Width LB UB Width

Univariate meta-analysis of posttest effects �0.96 �1.33 �0.59 0.74 0.53 �2.17 0.26 2.43

Univariate meta-analyses of RCT effects

With imputed pre-post correlations (r = 0.5) �1.06 �1.36 �0.77 0.59 0.40 �1.98 �0.15 1.83

With imputed pre-post correlations (r = 0.8) �1.02 �1.33 �0.72 0.60 0.45 �2.05 0.00 2.06

Multivariate meta-analyses

With robust standard errors (r = 0.5) �1.06 �1.36 �0.76 0.60 0.47 �2.12 0.00 2.12

With robust standard errors (r = 0.8) �1.06 �1.37 �0.76 0.61 0.50 �2.19 0.06 2.26

With an additional random effect �1.04 �1.27 �0.81 0.46 0.23 �1.60 �0.48 1.12

Note: Based on 14 independent effect sizes with a median sample size of 32. Δ = Pooled effect; τ2 = Between-sample heterogeneity; LB = lower bound;
UB = upper bound; width interval width as UB � LB.
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were small and the true pre-post correlation was large. In
contrast, a substantial improvement was observed when
pooling the pre-post correlations and using the pooled
estimates for the calculation of the sampling variances of
the RCT effect sizes. Respective univariate meta-analyses
were largely unbiased in most conditions. However, the
confidence intervals for both estimators held the nominal
error level in most of the examined conditions and, thus,
did not indicate substantially different interval estimates.

Second, univariate meta-analyses of RCT effect sizes
with imputed pre-post correlations also yielded largely
unbiased estimates of the true effect and appropriate cov-
erage rates of respective confidence intervals. However,
estimates of the between-study heterogeneity were sub-
stantially biased when there was a mismatch between the
imputed and the true pre-post correlation. This bias was
larger for small sample sizes and when imputing a corre-
lation that was too large as compared to imputing a too
small of a correlation.

Third, multivariate meta-analyses exhibited largely
unbiased estimates of the true effect in most conditions.
Albeit, at smaller average sample sizes or larger true
effects RVE(r = 0.8) was slightly less biased. However,
TLM often resulted in overcoverage of the confidence
intervals, while RVE held the nominal error rates in most
conditions. Importantly, little differences were observed
for RVE that assumed a correlation of 0.5 or 0.8 in the
working model. However, the random effect estimates
were slightly overestimated at small sample sizes when
few primary studies were available, slightly stronger so
for RVEs assuming larger correlations in the working
model. In contrast, TLM resulted in more biased random
effects across most conditions.

Fourth, all examined estimators had difficulties hold-
ing the nominal error rates for the prediction intervals,
thus, mirroring previous results for simpler meta-analytic
designs that also revealed far too low coverage rates for
prediction intervals in most studied conditions.74

Although prediction intervals reached close to nominal
levels for RVE(r = 0.8) and UMA-I(r = 0.8) in many condi-
tions, they tended to exhibit undercoverage at small
between-sample heterogeneity with large pre-post corre-
lations. In contrast, TLM showed substantial undercover-
age across most conditions, particularly in the presence
of large between-sample heterogeneity. Also, the univari-
ate meta-analyses of individual or pooled correlations did
not hold the coverage probabilities. Thus, the generaliza-
tion of effects is seriously hampered because the estima-
tion of reasonably expected effects in future RCT studies
is subject to substantial imprecision.

Finally, a rather robust finding pertained to the
effects of posttest variance heterogeneity and the pres-
ence of attrition bias. Neither attrition bias nor a rather

large variance heterogeneity in the treatment group at
the posttest affected the point estimates of fixed and ran-
dom effects or the respective interval estimates, as long
as the meta-analytic estimator incorporated the pretest
information.3 In contrast, meta-analyses of posttest effect
sizes that ignored the pretest information were affected
by both sources of error. Consequently, this estimator
yielded substantially biased point estimates and also dis-
torted confidence intervals.

Revisiting the introductory example on the efficacy of
virtual reality exposure therapy for the treatment of
anxiety-related disorders,72 the simulation results might
inform about the trustworthiness of the results juxtapos-
ited in Table 1. Given that the empirical meta-analysis
approximates the simulation condition with a small aver-
age sample size, a medium number of samples, a large
true effect, and large between-sample heterogeneity, the
larger fixed effect reported by RVE(r = 0.8) seems more
plausible than the smaller effects. Moreover, the hetero-
geneity estimate identified by TLM seems less trustwor-
thy because in contrast to the other estimators it
systematically underestimates the between-study vari-
ance. For RVE or UMA-I, the respective prediction inter-
val might be too small or too wide depending on the
unknown pre-post correlation. However, given the poor
coverage rates of the prediction intervals for all estima-
tors, these generally need to be interpreted cautiously.

8.1 | Recommendations for
meta-analytic practice

Even though the true RCT effect and the true pre-post
correlation are unknown in practice, a consideration of
the simulation results under the examined conditions led
us to put forward the following recommendations. If
most of the primary studies report sample-specific pre-
post correlations (and there are no obvious systematic
omissions), a univariate meta-analysis of RCT effect sizes
following the two-step approach is recommended. Thus,
first, a meta-analysis of the available pre-post correlations
is conducted and, then, the pooled correlation is used for
the calculation of the sampling variances of the RCT
effect sizes. This approach yielded largely unbiased point
estimates of the fixed and held the nominal coverage
rate for the 95% confidence interval. If only a few or no
pre-post correlations are available, we recommend using
multivariate meta-analyses of independent group effect
sizes with RVE that adopts a large correlation
(e.g., r = 0.8) in the working model. In our simulation,
this approach yielded largely comparable results to the
univariate approach in most conditions and also yields
more precise estimates of the between-sample variance.
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Alternatively, a univariate meta-analysis of RCT effects
with imputed pre-post correlations of r = 0.8 might be
used which fared comparably to RVE(r = 0.8). Although
none of the estimators resulted in trustworthy prediction
intervals, RVE(r = 0.8) or UMA-I(r = 0.8) might be preferred
because it resulted in more consistent coverage rates that
were less affected by the unknown pre-post correlations.
In contrast, univariate meta-analytic approaches with
known pre-post correlations or assuming small pre-post
correlations such as UMA-I(r = 0.5) or RVE(r = 0.5) yielded
slightly worse coverage rates and, thus, are not recom-
mended. However, generally, the differences between the
studied estimators were rather small in most conditions.
Therefore, the choice of estimator has likely only minor
implications for meta-analytic results in practice. Finally,
we want to caution against the imprudent use of meta-
analyses using posttest effect sizes that ignore pretest
information. These can result in substantially biased esti-
mates of fixed effects unless negligible attrition bias and
variance homogeneity can be guaranteed.

8.2 | Limitations and future directions

Although the aim of the study was the formulation of
clear-cut recommendations for the analysis of RCT effect
sizes based on a comprehensive simulation study, some
weaknesses limit the generalizability of the presented find-
ings and open avenues for future research. First of all, our
results only pertain to meta-analyses of standardized mean
differences for metric outcomes. Although continuous vari-
ables dominate psychological research, particularly clinical
studies often also employ dichotomous (or less frequently,
multinomial) outcomes that classify individuals into differ-
ent groups such as improved versus not improved, recidi-
vistic versus not recidivistic, or symptomatic versus
asymptomatic. These results might be similarly synthesized
across multiple samples, but require different effect sizes
(e.g., odds ratios, risk ratios). However, the choice of the
effect size might alter recommendations for a meta-analytic
estimator.20 Until these are available, applied researchers
are encouraged to conduct sensitivity analyses with differ-
ent estimators to compare the robustness of the meta-
analytic results.

Second, in line with prevalent practice, the compared
estimators assumed normally distributed effects which
might not be tenable in some situations, particularly
when the number of studies is small. Although point and
interval estimates of meta-analyses including this nor-
mality assumption are quite robust, even when the true
effects are severely skewed,50,75 alternative parametric or
mixture distributions might improve the accuracy of the
heterogeneity estimates and prediction intervals (see

Higgins and colleagues76 for a review). Therefore, future
research could evaluate the precision of RCT meta-
analyses for different distributional assumptions of the
between-study effect.

Third, as has been previously shown in the context of
univariate meta-analysis and RVE, small-sample correc-
tions are important to estimate precise standard errors
and confidence intervals.37,77 However, for TLM respec-
tive adjustments such as the Kenward-Rogers78 correc-
tion have not yet been thoroughly evaluated and, thus,
are hardly used.42 To overcome the problematic coverage
rates of TLM that were observed in the present study, we
strongly encourage further research on the development
of small-sample adjustments for these settings.

Fourth, the precise estimation of between-study het-
erogeneity is an unresolved challenge in meta-analytic
research. Simulation studies showed that in many scenar-
ios the coverage rates of prediction intervals are far too
low, particularly for heterogeneous study sample sizes.74

Therefore, future research is encouraged to improve pre-
diction intervals for RCT meta-analyses, for example,
using a bootstrap approach.79

Fifth, although the simulation studies tried to cover a
broad range of realistic conditions, empirical data typi-
cally is noisier and might not fully match the simulated
conditions. For example, we did not specifically evaluate
how outliers (i.e., extreme effect sizes), sample attrition,
or publication bias might have affected the meta-analytic
results. A fruitful extension could also focus on differ-
ences between the proposed estimators for the identifica-
tion of moderating effects.

Finally, our simulation was limited to estimators
commonly implemented in standard software that is used
by applied researchers. We readily acknowledge that
alternative approaches can also account for missing cor-
relations in multivariate meta-analyses. For example,
Hong and colleagues80 proposed a multivariate RVE
model that specifies an overall marginal correlation
between dependent outcomes, thus, not requiring within-
study correlations. However, the reported simulations
indicated an unacceptable precision of this approach for
meta-analyses with few primary studies (i.e., less than 50)
that dominate RCT research. Alternatively, Bayesian
methods could be adapted by assuming a distribution for
the missing pre-post correlations rather than imputing a
constant value.81

9 | CONCLUSION

Meta-analyses of treatment or intervention effects in RCTs
often struggle with missing information to calculate effect
sizes and their sampling variances. In practice, often
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ad-hoc solutions are adopted such as imputing a constant
value for missing pre-post correlations without knowing
the consequences for the meta-analytic results. The
presented simulation study suggested that imputing a
constant correlation of 0.8 might work well for estimating
the pooled effect, but slightly distorts the between-study
heterogeneity. Alternatively, we recommend a multi-
variate meta-regression approach with RVE that estimates
the difference in independent group effect sizes without
relying on known pre-post correlations.
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ENDNOTES
1 An anonymous reviewer emphasized that the model can be
equivalently defined with a random slope specification by repla-
cing ukt in (8) with ukt,0þukt,1 � t. Then, the random slope variance
τ21 represents the total between-study heterogeneity for the RCT
effect size, that is, τ2 in (6).

2 The total between-study heterogeneity for the RCT effect size
in the TLM corresponds to the variance of the difference in
pre-post effect sizes such that Var Δð Þ¼Var δk1�δk0ð Þ¼
Var β0þβ1þuk1þuk½ �� β0þuk0þuk½ �ð Þ¼Var β1þuk1�uk0ð Þ¼
Var uk1�uk0ð Þ¼Var uk1ð ÞþVar uk0ð Þ. Because the TLM assumes
similar between-study heterogeneities for all effect sizes, that is,
Var uk0ð Þ¼Var uk1ð Þ¼ τ2w, the variance of the RCT effect size
reduces to 2 �τ2w.

3 Supplement J also demonstrates that pretest imbalance, that is,
random between-study variance in pretest scores does not affect
the studied meta-analytic estimators differently. Thus, the

reported results are expected to generalize to conditions with
baseline imbalance.
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APPENDIX A

A.1 | Robust variance estimation
Following Pustejovsky and Tipton11, the mathematical
details of robust variance estimation using weighted least
squares with fully inverse-variance weights are briefly out-
lined. IfDk represents a vector of two effect sizes (i.e., at pre-
and posttest) in sample k � {1, …, K}, Xk the 2 � 2 design
matrix of covariates including the intercept and the time var-
iable t (0= pretest, 1= posttest),uk the vector of two random
effects, and ek the vector of two sampling errors, then the
random-effectmeta-analyticmodel can bewritten as

Dk ¼Xk �βþukþek:

Let Φk represent the 2 � 2 variance-covariance
matrix giving the true dependency structure of the effect
sizes in study k. Then, the weighted least squares esti-
mate and the sampling variance of β are given by

bβ¼M �
XK
k¼1

X0
kWkDk

 !
,

where M¼ PK
k¼1

X0
kWkXk

� ��1

Var bβ� �¼M �
XK
k¼1

X0
kWkΦkWkXk

 !
�M

with Wk denoting the 2 � 2 matrix of weights for study
k. If Φk were known, then the optimal weight matrix
would be given by Wk ¼ϕ�1

k . Otherwise, RVE adopts a
“working model” resulting in a general set of weights
and approximates the study-specific variance–covariance
matrix using the observed residuals bek ¼Dk�Xk

bβ. Then,
the robust estimator for the sampling variance of bβ is

Var bβ� �¼M �
XK
k¼1

X0
kWkAkbekbe0kAkWkXk

 !
�M

with Ak representing adjustments for small-sample
bias.37,38
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