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Abstract: Meta-analytic structural equation modeling (MASEM) combines the strengths of meta-analysis with the flexibility of path models to
address multivariate research questions using summary statistics. Because many research questions refer to latent constructs, measurement
error can distort effect estimates in MASEMs if the unreliability of study variables is not properly acknowledged. Therefore, a comprehensive
Monte Carlo simulation evaluated the impact of measurement error on MASEM results for different mediation models. These analyses showed
that point estimates in MASEM were distorted by up to a third of the true effect, while confidence intervals exhibited undercoverage that were
less than 10% in some situations. However, the use of adjustments for attenuation facilitated recovering largely undistorted point and interval
estimates in MASEMs. These findings emphasize that MASEMs with fallible measurements can often yield highly distorted results. We en-
courage applied researchers to regularly adopt adjustment methods that account for attenuation in MASEMs.
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Meta-analytic structural equationmodels (MASEM;Cheung&
Chan, 2005; Jak & Cheung, 2020; Ke et al., 2019; Lee &
Beretvas, 2022) addressmultivariate hypotheses using sample
statistics without requiring individual-level respondent data. In
contrast to univariate meta-analyses that typically focus on
bivariate effects (e.g., Cohen’s d, r), MASEM allows for ad-
dressing more complex research questions involving three or
more variables such as mediation or factor analyses (e.g.,
Marker et al., 2022; Schroeders et al., 2022;Wedderhoff et al.,
2021). Because MASEM involves the pooling of correlation
coefficients to examine the relations between variables of
interest in a structural equation modeling (SEM) framework,
established meta-analytic techniques such as artifact adjust-
ments canbe applied to study true score effects (seeWiernik&
Dahlke, 2020, for an introduction). So far, adjustment tech-
niques acknowledging, for example, measurement error are
not regularly used in applications of MASEM (see Sheng et al.,
2016). Some authors even suggested that respective adjust-
ments do not provide substantial benefits for applied research
but generally lead to comparable SEM results as MASEMs
using unadjusted correlation coefficients (Michel et al., 2011).
However, systematic methodological research on the impact
of artifact adjustments in MASEM is currently missing.
Because of their importance in psychological, clinical,

and epidemiological research, the present study focuses on

mediation models with one or two intervening variables
(see Figure 1). After summarizing prior work on biases
resulting from unreliable measurements in single samples
(see Savalei, 2019; Sengewald & Pohl, 2019), a compre-
hensive Monte Carlo study extends these results to MA-
SEM and evaluates potential distortions when failing to
account for measurement error in the involved variables.
To increase the generalizability of our findings across
different models and analytical choices, we study different
types of mediation with either one or two mediators for
different adjustment and MASEM methods.

Meta-Analytic Structural Equation Modeling
MASEM subsumes various statistical techniques that pool
multiple correlation matrices to fit path or structural
equation models to them. In the popular two-stage ap-
proach (TSSEM; Cheung & Chan, 2005), the m × m
correlation matrices Ri with i 2 f1; 2; . . . ; Ig for m vari-
ables observed in I individual studies are first pooled using
a fixed- or random-effects model. To this end, the vectors
ri of lower diagonal correlations in Ri are subjected to a
multivariate meta-analysis that decomposes the observed
correlations in the ith study as

ri ¼ ρi þ ei ¼ ρþ ui þ ei (1)
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where ρi are the population correlations in study i, ρ is the
average population correlation across the I studies, ui are
the study-specific random effects (i.e., the deviations of ρi
from ρ), and ei are the sampling errors (i.e., the deviations
of ri from ρi). If ui ¼ 0 for all i, the model reduces to a
fixed-effects specification. The ri are typically assumed to
follow a multivariate normal distribution ri ∼ N(ρ, T2 + Vi)
with T2 and Vi representing the m × m between-study (co)
variance matrices for ui and within-study (co)variance
matrices for ei, respectively. In practice, Vi is rarely known
but calculated from the observed sample statistics (see
Cheung & Chan, 2004). Then, bVi can be used to jointly
estimate bT2

and bρ in a SEM framework using full infor-
mationmaximum likelihood estimation (Cheung, 2013). In
the second stage of TSSEM, the hypothesized SEM is fitted
to the pooled correlations bρ using a weighted least squares
estimator with bV�1

ρ , the inverse of the asymptotic (co)
variances of bρ, as the respective weight matrix (Cheung &
Chan, 2005). An advantage of the multivariate approach is

that the second stage does not require specifying an ar-
bitrary sample size for the estimation of the SEM but di-
rectly incorporates the precision of the pooled estimates in
the form of bVρ.

In addition to the described TSSEM approach, several
other MASEM techniques have been proposed (e.g., Jak &
Cheung, 2020; Ke et al., 2019; Lee & Beretvas, 2022;
Viswesvaran & Ones, 1995). For example, Jak and Cheung
(2020) recently introduced a one-stage method (OSMA-
SEM) that does not require estimating a pooled correlation
matrix as an intermediate step. Rather, it restricts the
pooled correlations in themultivariatemeta-analysis to the
model implied correlations given by the specified SEM
(e.g., regression weights, covariances). In this way, OS-
MASEMcan directly estimate the SEMparameters without
having to estimate the pooled correlations first. Although
OSMASEM and TSSEM result in highly comparable results
(Jak & Cheung, 2022), OSMASEM is more versatile and
can also include study-level moderators for each SEM
parameter.

Adjustments for Measurement Error in MASEM
Psychological constructs can rarely be measured without
error (Gnambs, 2015). Rather, measurement error variance
distorts sample statistics including the correlation coeffi-
cient (see Wiernik & Dahlke, 2020). Therefore, various
statistical procedures have been developed to counteract
the distorting effects. In the context of MASEM, at least
three approaches seem worthwhile to consider. On the one
hand, MASEM could be conducted with latent correlations
that are free from measurement error. Rather than pooling
observed sample correlations, MASEM might make use of
true score correlations from each sample, for example,
estimated with respective latent variable SEMs. Then, the
resultingmeta-analytic pathmodels should not be distorted
by measurement error variance. However, this approach is
often limited to specific applications (see, for example,
Brunner et al., 2022) because latent correlationmatrices are
frequently not reported in primary studies. Alternatively,
latent variables could be directly modeled in the MASEM.
However, this would require access to item-level statistics
for all involved constructs, and item-level correlation ma-
trices are typically not reported in primary studies.
Therefore, the specification of latent variables in MASEM,
so far, is limited to factor analytic research on single in-
struments such as the General Health Questionnaire
(Gnambs & Staufenbiel, 2018), Rosenberg’s Self-Esteem Scale
(Gnambs et al., 2018), or Toronto Alexithymia Scale
(Schroeders et al., 2022). But it seems rarely conceivable to
identify item-level correlation matrices for multiple in-
struments that would be required for respective multi-
construct MASEMs. Consequently, a third approach that

Figure 1. Mediation models with one or two intervening variables: (A)
simple mediation, (B) parallel mediation, and (C) sequential mediation
model.
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adjusts observed sample correlations for attenuation due to
measurement error seems most applicable for meta-
analyses based on the available information.
Following classical test theory, the degree of attenuation of

the observed correlations ri is a multiplicative function of the
square roots of the reliabilities, gi,x and gi,y, of the involved
variables x and y such that ri ¼ ðgi;x � gi;yÞ�ð1=2Þ � rðgÞi .
Consequently, the disattenuated correlations rðgÞi and their
sampling (co)variances VðgÞ

i can be derived as

rðgÞi ¼
�
gi;x � gi;y

��ð�1=2Þ � ri (2)

VðgÞ
i ¼

�
gi;x � gi;y

��ð�1=2Þ
Ä
�
gi;x � gi;y

��ð�1=2ÞT
� Vi: (3)

In Equations 2 and 3, �, �ð�1Þ, and �ð1=2Þ denote the
Hadamard (element-wise) product, the Hadamard in-
verse, and the Hadamard square root, respectively, while
Ä gives the Kronecker product. If the reliabilities are
known for them variables in the I studies, each correlation
coefficient ri can be individually adjusted for unreliability.
Then, MASEM can pool the rðgÞi as outlined above into the
average disattentuated population correlations bρðgÞ, thus
leading to estimates of true score effects in the hypothe-
sized SEM. Unfortunately, poor reporting practices in
primary studies often lead to unknown reliabilities for
selected (or even most) correlations. In this case, the
available reliabilities are first averaged into gi,X and gi,Y,
either by taking their mean values across studies or
adopting more sophisticated techniques of reliability
generalization (e.g., Scherer & Teo, 2020) or imputed from
other sources (e.g., Gnambs, 2014, 2015). Then, TSSEM
adjusts the average population correlations bρ and their
asymptotic (co)variances bVρ as in Equations 2 and 3 using
the gi, thus giving the disattenuated average population
correlations bρðgÞ and their sampling variances bVðgÞ

ρ . For
OSMASEM, these adjustments are slightly more compli-
cated because the model-implied correlations need to be
adjusted for unreliability (see Appendix A). Generally,
adjustments using artifact distributions should lead to
comparable results as individual adjustments as long as
systematically missing reliabilities1 do not distort the
pooled reliabilities in the artifact-adjustment approach.
However, a potentially serious disadvantage of these ad-
justments is their reliance on reliability estimates reported
in the primary studies. If these represent biased indicators
of a measure’s measurement error variance, for example,
because important assumptions were violated (e.g.,

essentially τ-equivalent measurements for coefficient al-
pha; Dunn et al., 2014), these reliabilities might lead to
overadjustments or underadjustments of the observed
correlations and, consequently, to distorted path estimates
in the MASEM (see Rhemtulla et al., 2020).
The use of artifact adjustments in MASEM is, so far, not

standard in meta-analytic practice. While MASEMs in
industrial-organizational psychology following the tradi-
tion of psychometric meta-analysis (Viswesvaran & Ones,
1995) often apply adjustments for various measurement
artifacts, it is less common in other domains such as ed-
ucational or health psychology that more frequently adopt
the described TSSEM or OSMASEM. A review of 160
MASEMs published between 1995 and 2015 (Sheng et al.,
2016) reported that about three-quarters of them applied
some form of adjustment for unreliability. Surprisingly,
some research suggested that these adjustments might be
superfluous because substantial conclusions are generally
not affected by them (Michel et al., 2011). Reanalyses of
five published MASEMs with and without adjustments for
attenuation showed negligible changes in SEM path esti-
mates between M(Δβ) = .01 and .05 and comparable fit
indices. Therefore, these authors argued that respective
adjustments are inconsequential for MASEMs as long as
the included variables exhibit satisfactory levels of reli-
ability (i.e., about .70–.90). However, these results are at
odds with related work on meta-analyses of bivariate ef-
fects (e.g., Le et al., 2016) and also a plethora of meth-
odological studies on measurement error in primary
research (e.g., Aiken &West, 1991; Cole & Preacher, 2014;
Fritz et al., 2016; Savalei, 2019; Sengewald & Pohl, 2019;
Steiner et al., 2011; Westfall & Yarkoni, 2016).

The Impact of Measurement Error in Primary
Mediation Research
Growing methodological evidence shows the conse-
quences of measurement error on regression results for
different contexts. Recently, Savalei (2019) derived the
impact of measurement error in a single mediation model
as shown in Figure 1A, with a latent treatment variable ηX,
a latent outcome ηY , and a latent mediator ηM. Based on
this model, the process by which the treatment affects the
outcome can be investigated by separating the direct effect
c and the indirect effect that is equal to the product ab,
using the two regression equations,

ηM ¼ a � ηX þ ζM; (4)

1 The pooled reliability estimates might be systematically distorted, if studies administering, for example, less reliable measures have a higher
propensity of reporting omissions (i.e., do not inform about the reliability). Then, the pooled reliabilities will be overestimated and, consequently,
the adjusted correlations will lead to underestimations of the SEM true score effects.
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ηY ¼ b � ηM þ c � ηY þ ζY : (5)

However, using fallible measures X, Y, and M in a path
analysis and ignoring measurement error εX, εY , and εM
can affect the efficacy and accuracy of the effect estimates,
depending on the specific parameter constellation.

According to Savalei (2019), measurement error in the
outcome Y simply adds to the error term ζY and decreases
the efficacy of effect estimates, but not the accuracy (see
also Aiken & West, 1991; Wiernik & Dahlke, 2020). Thus,
unstandardized regression coefficients will not be af-
fected, but statistical power and standardized effect esti-
mates decrease, in relation to the reliability gY of the
dependent variable Y.

As opposed, when predictor variables are fallible, this will
also affect the accuracy of effect estimates (e.g., Aiken &
West, 1991; Sengewald & Pohl, 2019; Steiner et al., 2011).
Savalei (2019) derived how the regression coefficients with
fallible variables (i.e., a�; b�; c�) change, when ignoring
measurement error. For simplicity, we assume standardized
variableswith variances VarðηXÞ ¼ VarðηMÞ ¼ VarðηYÞ ¼ 1.
With fallible variables, the a-path always decreases in re-
lation to the reliability gX of the predictor variableX, that is,

a� ¼ a � gX: (6)

Instead, partial regression coefficients can show bias in
different directions, depending on the relation of all var-
iables. This holds for the b- and c-path, that are, in case of
fallible variables,

b� ¼ gM � ðbþ a � c� gX � a � ða � bþ cÞÞ � �1� gX � gM�a2
��1

;

(7)

c� ¼ gX � ðcþ a � b� gM � a � ðbþ a � cÞÞ � �1� gX�gM�a2
��1

:

(8)

Thus, the reliabilities gX and gM of both predictors X and
M and the specific constellation of all variables are relevant
for obtaining the consequences of measurement error in the
coefficients. Differences to the true effects (i.e., b� � b and
c� � c) will occur, in relation to the predictor’s own reliability
and impact on the outcome (i.e., b with gM and c with gX,
respectively), but also depend on the reliability of the other
predictor and its partial impact on the respective coefficient
(i.e., for the b-path: ac with gX and for the c-path: ab with
gM). In addition, the a-path has the potential to amplify bias
in relation to the reliabilities, as ð1� gX � gM � a2Þ�1 shows
(see also Sengewald & Pohl, 2019). Especially for large
effects, low reliabilities, and substantial a-paths, the con-
sequences of measurement error can be serious but depend
on the partial relations (i.e., whether the predictors increase
or reduce each other’s impact).

Yet, these implications for the consequences of mea-
surement error only hold for a single mediation model.
When model complexity increases, for instance, when
more variables are involved, the impact of measurement
error can be even more serious and less tractable because
additional variables can compensate but also amplify the
bias (e.g., Cole & Preacher, 2014; Fritz et al., 2016; Savalei,
2019; Sengewald & Pohl, 2019). Corrections for mea-
surement error can help to prevent for the bias as well as
for its amplification due to other variables.

Objectives of the Present Study
Measurement error is a pervasive problem when studying
psychological phenomena referring to latent constructs.
Fallible measures can distort, among others, path and var-
iance estimates in SEM and, thus, lead to invalid conclusions
(e.g., Aiken&West, 1991; Cole&Preacher, 2014; Sengewald
& Pohl, 2019; Westfall & Yarkoni, 2016). In mediation
models, bias depends on a complex interplay between the
reliability of the intervening variables and the size of the
involved effects (Savalei, 2019). Despite the well-established
consequences of measurement error in primary research,
adjustments for unreliability are currently used rather un-
systematically inMASEM (Sheng et al., 2016). Some authors
even suggest that they might not provide notable benefits
(Michel et al., 2011). Therefore, the present simulation study
evaluated the consequences of ignoring measurement error
in different MASEMs with one or two mediating variables
(see Figure 1). We demonstrate how adjustments for un-
reliability that were initially developed for bivariate meta-
analysis (Wiernik & Dahlke, 2020) allow recovering unbi-
ased parameter estimates in MASEM and improve the
precision of the estimated effects.

Method

Evaluated SEMs and MASEM Procedures
The simulation evaluated 18 different mediation models
(see Table 1). The simple mediation models examined the
indirect effect of an independent variable ηX on an outcome
ηY via a single mediator ηM, while the parallel mediation
models specified two conditionally independent mediators
ηM and ηW , thus modeling additive indirect effects (see
Figure 1). Moreover, the sequential mediation models used
two mediators ηM and ηW in consecutive order. All models
assumed a zero effect of ηX on ηY (c-path), thus reflecting
full mediation. Based on the true models, we evaluated the
impact of using imperfect measures (i.e., X ¼ ηX þ εX,
M ¼ ηM þ εM; W ¼ ηW þ εW , Y ¼ ηY þ εY) on all path
coefficients. In the special case of full mediation, the in-
direct effect will not be affected by the c-path, and thus, bias
due tomeasurement error will be in the same direction (i.e.,
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decreases the indirect effect toward zero). Accordingly, we
regard the impact of measurement error in indirect effect
estimates without the partial impact of the direct effect on
the respective coefficient (i.e., for the b-path: acwith gX). To
demonstrate the impact of measurement error as discussed
before (Savalei, 2019; Sengewald & Pohl, 2019), we inde-
pendently varied three design factors, that is, the size of (a)
the average reliabilities of the mediators in the samples (.70
vs. .90), (b) the total indirect effect (.01–.04 vs. .09–.40),
and (c) the a-paths (.15 vs. .60). For each factor, we con-
sidered a small or high value, while keeping the other
factors constant at a medium size. For each of the 18
models, six MASEMs were estimated that differed re-
garding the adjustment method (without reliability adjust-
ments vs. with adjustments of individual correlations vs.
adjustments of pooled correlations) and the MASEM type
(TSSEM vs. OSMASEM). This resulted in a total of 108
simulation conditions.

Data Generation and Simulation Procedure
The simulation was estimated in R (version 4.1.2; R Core
Team, 2021) using metaSEM (version 1.2.5.1; Cheung,
2015) with OpenMx (version 2.20.6; Neale et al., 2016)
and included 1,000 replications of each condition. Rep-
lications that resulted in nonpositive definite correlation
matrices or for which a MASEM returned an improper
solution were discarded and replaced with a valid case.
The simulation of a given replication proceeded as follows:
First, the population values of the mediation model (see

Table 1) were used to calculate the average population
correlationmatrix asP ¼ ðI� AÞ � S � ðI� AÞ9 with I, S, and
A representing a m × m identity matrix, diagonal matrix
with the (residual) variances, and square matrix with the
directed paths of the mediation model, respectively (see
Appendix B for details). Consequently, ρ denotes the row
vector including the lower diagonal elements of P. The
random variances τ2 for ρ as given by the diagonal matrix
T2 were constrained, thus adopting a common between-
study heterogeneity for all correlations. For a given repli-
cation, τ was randomly drawn from a half-normal distri-
bution, τ ∼ half-N(0, 0.20), that was truncated at 0.50 to
prevent excessively large heterogeneity estimates. This
resulted in random variances that are typically observed in
psychological meta-analyses (see Van Erp et al., 2017).
Finally, the number of samples included in a meta-analysis
was randomly drawn from a uniform distribution, I ∼ U(5,
50), to cover typical conditions in MASEM (see Table 2).
Second, for each simulated sample i, the respective sample

size was randomly drawn from a gamma distribution, ni ∼
Γ(1.3, 250), to reflect the positively skewed distributions
frequently observed in psychological meta-analyses (cf.
Sánchez-Meca & Maŕın-Mart́ınez, 2008). To avoid extreme
sample sizes, the distribution was truncated at 50 and 900,

respectively. Reliability generalization studies showed that,
on average, reliabilities of psychological measures fall around
.80 and rarely drop below .65 (Gnambs, 2015). Therefore, in
each sample, the 1 × m row vector of reliabilities gi for the
included variables was randomly drawn from uniform dis-
tributions, gi∼U(.65, .95). In conditions thatmanipulated the
average reliability of the mediators in the samples (see
Table 1), we useddraws fromgi∼U(.65, .75) or gi∼U(.85, .95)
to represent low or high reliabilities, respectively. Note that
the generated reliabilities refer to themeasurement precision
in the specific sample. The approach of random draws allows
for generalizing to different reliabilities that might occur in
specific samples, but does not generalize to themeasurement
precision in an unobserved population.
Third, the sample correlations between the m variables

were generated by first drawing the population correla-
tions ρi for sample i from a multivariate normal distri-
bution N(ρ, T2

i ). Then, the vector of disattenuated

Table 1. Evaluated MASEM models

Model

SEM paths Average reliabilities

a b Indirect X M W Y

Low reliability

Simple mediation .30 .30 .09 .80 .70 — .80

Parallel mediation .30 .30 .18 .80 .70 .70 .80

Sequential mediation .30 .30 .04 .80 .70 .70 .80

High reliability

Simple mediation .30 .30 .09 .80 .90 — .80

Parallel mediation .30 .30 .18 .80 .90 .90 .80

Sequential mediation .30 .30 .04 .80 .90 .90 .80

Small indirect effect

Simple mediation .30 .08 .02 .80 .80 — .80

Parallel mediation .30 .08 .04 .80 .80 .80 .80

Sequential mediation .30 .08 .01 .80 .80 .80 .80

Large indirect effect

Simple mediation .30 .68 .20 .80 .80 — .80

Parallel mediation .30 .68 .40 .80 .80 .80 .80

Sequential mediation .30 .68 .09 .80 .80 .80 .80

Small a-path

Simple mediation .15 .60 .09 .80 .80 — .80

Parallel mediation .15 .60 .18 .80 .80 .80 .80

Sequential mediation .15 .60 .04 .80 .80 .80 .80

Large a-path

Simple mediation .60 .15 .09 .80 .80 — .80

Parallel mediation .60 .15 .18 .80 .80 .80 .80

Sequential mediation .60 .15 .04 .80 .80 .80 .80

Note. In all models, the direct effect of ηX on ηY (c-path) was set to 0. For
the parallel mediation model, a = aM = aW and b = bM = bW was used, while
for the sequential mediation, we used d = .44. Indirect = total indirect
effect of ηX on ηY .
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correlations rgi for sample i was calculated based on
random draws of size ni from a multivariate normal dis-
tribution N(0, ρi). Finally, the attenuated correlations ri
were created by multiplying rgi with the lower diagonal of
Gi ¼ g0:5i � ðg0:5i ÞT. This resulted in the sample correlation
matrix Ri being analyzed in the MASEMs.

Steps 2 and 3 were repeated for each of the I samples
included in a given meta-analysis. Then, the I inverse
variance weighted correlation matrices were pooled with a
diagonal random effects structure using maximum likeli-
hood estimation, either using a two-stage (Cheung & Chan,
2005) or a one-stage approach (Jak & Cheung, 2020). The
respective asymptotic sampling (co)variances for Ri were
derived following Cheung and Chan (2004). Depending on
the examined condition (see Table 1), either each sample
correlationmatrixRi or the pooled correlationmatrix bPwith
their respective (co)variances were adjusted for unreliabil-
ity. The precision of the parameter estimates in the medi-
ation model was quantified using 95% likelihood-based
confidence intervals that are superior for parameters with
non-normal sampling distributions such as indirect effects
(Cheung, 2009; Neale & Miller, 1997).

Performance Criteria
The performances of the different estimators were studied
using the population bias, the root mean squared error
(RMSE), and the coverage rates for each parameter. The
raw population bias is the average difference between the
estimated parameter for each condition and the data-
generating true value across all replications, while the
percent bias is the raw bias divided by its true value times
100. Percent biases less than 5% are frequently considered
negligible (Hoogland & Boomsma, 1998). The RMSE is the
square root of the average squared difference between
each estimated parameter and its true value. Because it is a
mixture of the bias and efficiency of an estimator, a biased
method can be preferred if it is more accurate and, thus, on
average, is closer to the true value. Finally, the coverage
rates of the 95% confidence intervals represent the per-
centage of replications for which the true effect fell within
the interval. Coverage rates for which the nominal cov-
erage probability of 95% fell within approximately two SDs
around the observed rates were deemed acceptable. The
Monte Carlo error for each performance criterion was
estimated using the jackknife method (Koehler et al.,
2009).

Transparency and Openness
The computer code, simulated data, and full results are
provided in the online material available in PsychArchives
at https://doi.org/10.23668/psycharchives.8537.

This study’s design and its analyses were not
preregistered.

Results

The simulation results are summarized separately for the
different performance criteria. Because the different adjust-
ment methods and MASEM types yielded highly comparable
results, only the findings for TSSEM with adjustments of the
pooled correlations will be reported in detail. Full results are
available in our online material present in PsychArchives.

Convergence Rates
TheTSSEMs converged at both stages for all replications and
simulation conditions. In contrast, 0.0%–0.6% (Mdn =0.1%)
OSMASEMs exhibited convergence problems and had to be
replaced with a valid run. The convergence rates were not
systematically related to the adjustment method (none vs.
individual vs. pooled correlations) or specific simulation
conditions (see online material). Thus, in general, the ex-
amined MASEM methods and adjustment techniques did
not introduce pronounced estimation problems.

Biases in Parameter Estimates
Measurement error resulted in substantial parameter bias for
all examined models (see Tables 3 and 4). Percent biases in
the a- and b-paths varied across the different mediation
models and simulation conditions between�17% and�28%
(Mdn = �22%) and �18% and �33% (Mdn = �24%), re-
spectively, indicating a substantial underestimation of the
true path coefficients. The distortions in the respective in-
direct effects, integrating the distortion of both paths, were
even more pronounced and fell between �32% and �63%
(Mdn = �44%). As expected from prior research on simple
mediation models in primary studies (Savalei, 2019), the
biases in indirect effects were larger for less as compared to
more reliable measurements (49% vs. 32%), for larger as

Table 2. Settings for simulations

Parameter Distribution

Reliabilities in sample i (gi) gi ∼ U(.65, .75) for M(g) = .70

gi ∼ U(.65, .95) for M(g) = .80

gi ∼ U(.85, .95) for M(g) = .90

Random effect (τρ) τρ ∼ min{half-N(0, 0.20), 0.50}

T2 = diag(τρ)

Number of samples (I) I ∼ U(5, 50)

Sample size (n) n ∼ min{Γ(1.3, 250) + 50, 900}

Population correlations
in sample i (ρi)

ρi ∼ N(ρ, c)

Disattenuated correlations
in sample i (rgi )

rgi = Cor ½niXp ∼ N(0, ρi)]

Attenuated correlations
in sample i (ri)

ri ¼ rgi � g0:5i � ðg0:5i ÞT

Note. half-N = half-normal distribution; Γ = gamma distribution with shape
and scale parameters, U = uniform distribution; ρ = average population
correlations, ni

Xp = variable scores for ni respondents on p variables.
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compared to smaller indirect effects (42% vs. 38%), and
larger as compared to smaller a-paths (46% vs. 40%). Thus,
depending on the examined populationmodel,measurement
error had an unequally strong impact. To some degree,
similar patterns were also observed for the parallel and se-
quential mediation models showing especially larger percent
biases in indirect effects for less as compared tomore reliable
measurements (�49%/�63% vs. �33%/�41%).
After adjusting the pooled correlations for unreliability, the

percent biases in all path coefficients substantially dropped
and fell for the a- and b-paths across the different simulation
conditions at medians of �3% (Min = �6%, Max = 2%)
and �5% (Min = �17%, Max = 0%), respectively. Although
few estimates exhibited percent biases falling strictly below
5% which is often considered negligible (Hoogland &
Boomsma, 1998), most of them closely bordered this
threshold (see Table 3). Only in conditions involving rather
large correlations between selected variables (e.g., for large
indirect effects), biases in the b-paths remained slightly el-
evated. Percent biases for the indirect effects were also
substantially smaller in all conditions after adjustments for
unreliability but generally slightly larger as compared to the
direct effects (Mdn = �10%, Min = �2%, Max = �15%).
The percent biases of the unadjusted effects translated

into raw biases between �.22 and �.01 (Mdn = �.06) and,
thus, spanned a rather broad range from inconsequential
to substantial (see Table 4). In contrast, after adjustments
for unreliability, the remaining raw biases fell at a median
of �.01 across the simulation conditions (Min = �.11,
Max = .01). Again, the remaining biases were largest for
conditions with highly correlated variables, for example,
reflecting large indirect effects. The raw bias shows that
also direct effects estimates were distorted without ad-
justments in our generated data with a full mediation (see
Table 4). For this case, biases in percentage are not de-
fined, as bias does not depend on the true c-path, that is
zero, but on the partial impact of the fallible mediators and
the fallible outcome. In line with the indirect effect esti-
mates, the direct effect estimates were close to the true
effects when reliability adjustments were implemented.

Root Mean Squared Error of Parameter Estimates
The RMSE mirrored the results of the bias analyses and
emphasized the benefits of adjustments for unreliability (see
online material). While the median RMSEs of the unadjusted
a- and b-paths across mediation models and simulation con-
ditions fell at .08 (Min = .04, Max = .15) and .08 (Min = .04,
Max = .23), respectively, they reduced to .05 (Min = .04,
Max = .07) and .06 (Min = .04, Max = .14) after adjusting the
pooled correlations for unreliability. For the indirect effects, a
similar pattern was observed with larger RMSEs for the un-
adjusted (Mdn = .04,Min = .01,Max = .19) as compared to the
adjusted effects (Mdn = .02, Min = .01, Max = .08). The

benefits of adjustments for unreliability seemed more pro-
nounced for larger effects such as conditionswith largea-paths
as compared to population models with smaller effects. For
example, for the parallel mediation model, the simulation
condition with a large indirect effect resulted in RMSEs of .19
and .08 for the unadjusted and adjusted models, respectively,
whereas the respective estimates were .02 and .02 for a small
indirect effect. Detailed results are given in the onlinematerial
present in PsychArchives. Together, these results show that
adjustments for unreliability did not lead to substantially less
efficient estimators that might offset their reduced bias.

Coverage Rates of Confidence Intervals
The 95% confidence intervals of the parameter estimates
were substantially distorted by unaccounted measure-
ment error (see Table 5). The respective coverage rates for
the a- and b-paths varied across the different mediation
models and simulation conditions between 2% and 64%
(Mdn = 27%) and 0% and 68% (Mdn = 29%), respectively,
indicating a substantial undercoverage. The respective
distortions for the indirect effects were even more pro-
nounced and fell between 0% and 56% (Mdn = 10%). In
line with the bias analyses, the undercoverage in indirect
effects of the simple mediation model was larger for less
as compared to more reliable measurements (8% vs. 26%)
and for larger as compared to smaller indirect effects (4%
vs. 59%). Thus, depending on the examined population
model, measurement error affected the confidence in-
tervals to a different degree. After adjusting the pooled
correlations for unreliability, the coverage rates ap-
proached the nominal level and fell for the a- and b-paths
across the different simulation conditions at medians of
93% (Min = 81%, Max = 95%) and 93% (Min = 25%,
Max = 95%), respectively. Although few estimates re-
sulted in coverage rates of exactly 95%,most of themwere
in close range (see Table 5). Only in conditions involving
rather large correlations between selected variables (e.g.,
for large indirect effects), coverage rates for the b-paths
remained poor, even after adjustments for unreliability.
Coverage rates for the indirect effects also improved in all
conditions after adjustments for unreliability but re-
mained slightly below the nominal level (Mdn = 88%,
Min = 57%, Max = 95%).

Discussion

Most research questions in psychology and related do-
mains refer to unobservable constructs that cannot be
measured without error (see Gnambs, 2014, 2015). Be-
cause analyses of fallible measurements can lead to se-
riously distorted estimates of true score effects (e.g.,
Savalei, 2019; Sengewald & Pohl, 2019), hypotheses
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involving these variables are often examined with latent
variable models or, in the context of bivariate meta-
analyses, with adjustments for attenuation (see Wiernik
& Dahlke, 2020). Surprisingly, awareness of this problem
has not yet widely diffused to applications of multivariate
MASEM. Adjustments for unreliability that correct for the

biasing influence of measurement error is currently used
rather unsystematically (Sheng et al., 2016). Some authors
even argued that measurement error is no serious threat to
the validity of MASEMs and, thus, can be generally ne-
glected (Michel et al., 2011). Therefore, the present study
evaluated this claim using a comprehensive simulation of

Table 3. Percent biases in regression coefficients with and without adjustments for unreliability

Simple mediation Parallel mediation Sequential mediation

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Low reliability

a�M �28% �3% �28% �4% �27% �4%

a�W �27% �3%

b�
M �30% �4% �30% �6%

b�
W �30% �6% �27% �4%

Indirect� �49% �7% �49% �9% �63% �10%

High reliability

a�M �18% �3% �17% �3% �18% �4%

a�W �17% �3%

b�
M �18% �3% �19% �5%

b�
W �19% �5% �18% �4%

Indirect� �32% �5% �33% �8% �41% �10%

Small indirect effect

a�M �23% �3% �23% �4% �21% �3%

a�W �23% �4%

b�
M �21% 0% �24% �5%

b�
W �25% �6% �20% �1%

Indirect� �38% �2% �42% �9% �51% �8%

Large indirect effect

a�M �22% �3% �19% 2% �22% �4%

a�W �18% 2%

b�
M �26% �6% �33% �16%

b�
W �33% �17% �24% �6%

Indirect� �42% �8% �45% �15% �52% �11%

Small a-path

a�M �22% �2% �20% 1% �21% �3%

a�W �21% �1%

b�
M �24% �5% �28% �10%

b�
W �28% �11% �23% �6%

Indirect� �40% �6% �43% �10% �51% �10%

Large a-path

a�M �24% �5% �22% �5% �24% �6%

a�W �22% �5%

b�
M �29% �5% �24% �6%

b�
W �24% �6% �24% �5%

Indirect� �46% �10% �41% �10% �53% �12%

Note. a�M = effect of X onM, a�W = effect of X onW, b�
M = effect ofM on Y, b�

W = effect ofW on Y, Indirect� = total indirect effect of X on Y. The percentage bias is
not defined for the direct effect of X on Y in a full mediation model and, thus, not included. Bold values indicate estimates for which the absolute larger bound
of the 95% jackknife interval is smaller than 5%. Results are for TSSEM with adjustments of pooled correlations.
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Table 4. Raw biases in regression coefficients with and without adjustments for unreliability

Simple mediation Parallel mediation Sequential mediation

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Low reliability

a�M �.08 �.01 �.08 �.01 �.08 �.01

a�W �.08 �.01

b�
M �.09 �.01 �.09 �.02

b�
W �.09 �.02 �.08 �.01

c� .03 .01 .05 .01 .02 .01

Indirect� �.04 �.01 �.09 �.02 �.02 .00

High reliability

a�M �.05 �.01 �.05 �.01 �.05 �.01

a�W �.05 �.01

b�
M �.05 �.01 �.06 �.02

b�
W �.06 �.01 �.06 �.01

c� .01 .01 .02 .01 .01 .01

Indirect� �.03 .00 �.06 �.01 �.02 .00

Small indirect effect

a�M �.07 �.01 �.07 �.01 �.06 �.01

a�W �.07 �.01

b�
M �.02 .00 �.02 .00

b�
W �.02 .00 �.02 .00

c� .00 .00 .01 .00 .00 .00

Indirect� �.01 .00 �.02 .00 �.01 .00

Large indirect effect

a�M �.07 �.01 �.06 .01 �.07 �.01

a�W �.06 .01

b�
M �.18 �.04 �.22 �.11

b�
W �.22 �.11 �.16 �.04

c� .05 .02 .09 .05 .03 .01

Indirect� �.09 �.02 �.18 �.06 �.05 �.01

Small a-path

a�M �.03 .00 �.03 .00 �.03 �.01

a�W �.03 .00

b�
M �.14 �.03 �.17 �.06

b�
W �.17 �.06 �.14 �.03

c� .02 .00 .04 .02 .01 .00

Indirect� �.04 �.01 �.08 �.02 �.02 .00

Large a-path

a�M �.15 �.03 �.13 �.03 �.14 �.03

a�W �.13 �.03

b�
M �.04 �.01 �.04 �.01

b�
W �.04 �.01 �.04 �.01

c� .02 .01 .04 .02 .01 .00

Indirect� �.04 �.01 �.07 �.02 �.02 .00

Note. a�M = effect of X onM, a�W = effect of X onW, b�
M = effect ofM on Y, b�

W = effect ofW on Y, c� = effect of X on Y, Indirect� = total indirect effect of X on Y.
Results are for TSSEM with adjustments of pooled correlations.
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Table 5. Coverage rates of 95% confidence intervals with and without adjustments for unreliability

Simple mediation Parallel mediation Sequential mediation

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Low reliability

a�M 18% 94% 17% 93% 15% 93%

a�W 19% 94%

b�
M 19% 93% 15% 91%

b�
W 15% 93% 16% 93%

c� 71% 92% 48% 92% 85% 92%

Indirect� 8% 93% 1% 86% 1% 86%

High reliability

a�M 39% 92% 45% 93% 39% 93%

a�W 44% 93%

b�
M 45% 93% 43% 92%

b�
W 46% 91% 40% 92%

c� 91% 94% 87% 94% 94% 95%

Indirect� 26% 91% 12% 88% 12% 88%

Small indirect effect

a�M 30% 92% 27% 93% 27% 94%

a�W 26% 93%

b�
M 86% 95% 85% 95%

b�
W 85% 95% 84% 94%

c� 94% 94% 93% 94% 95% 95%

Indirect� 59% 95% 45% 94% 33% 93%

Large indirect effect

a�M 27% 93% 34% 93% 27% 92%

a�W 35% 92%

b�
M 1% 79% 0% 26%

b�
W 0% 25% 1% 79%

c� 54% 92% 18% 80% 69% 92%

Indirect� 4% 88% 0% 57% 0% 83%

Small a-path

a�M 61% 94% 64% 95% 64% 92%

a�W 63% 95%

b�
M 3% 87% 0% 64%

b�
W 1% 64% 3% 83%

c� 85% 94% 61% 95% 91% 95%

Indirect� 23% 93% 4% 87% 8% 87%

Large a-path

a�M 3% 84% 3% 84% 2% 81%

a�W 2% 84%

b�
M 60% 95% 69% 95%

b�
W 70% 95% 58% 93%

c� 85% 93% 79% 94% 89% 94%

Indirect� 29% 93% 23% 93% 9% 87%

Note. a�M = effect of X onM, a�W = effect of X onW, b�
M = effect ofM on Y, b�

W = effect ofW on Y, c� = effect of X on Y, Indirect� = total indirect effect of X on Y. Bold
values indicate estimates for which the 95% jackknife interval includes 95%. Results are for TSSEM with adjustments of pooled correlations.
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MASEMs for different mediation models. These analyses
led to three main conclusions:
First, measurement error biases effect estimates in MA-

SEMs. In our simulation, the true path coefficients were
underestimated by up to a third in some cases. For indirect
effects, this problem was even more severe and reached
distortions up to 50%. Moreover, biases depended on the
specifics of the examined model. For example, larger biases
were observed when variables were highly correlated or
reliabilities were low. These results clearly undermine the
claim that measurement error can generally be ignored in
MASEMs as long as the variables exhibit levels of reliability
typically observed in psychological research (Michel et al.,
2011). Rather, the difference between observed and true
effects was often substantial and, thus, potentially under-
mines the validity of interpretations for MASEMs. Second,
measurement error affected the interval estimates of the
effects, more so than the respective point estimates. As a
result, the coverage rates of the confidence intervals often
resembled a game of chance, resulting in intervals that, in
some instances, included the true effects less than 1% of all
times. Again, the undercoverage depended to some degree
on the studied population model and, among others, was
larger for less reliable measures. Finally, MASEMs with
adjustments for unreliability inmany situations led to largely
unbiased point estimates and confidence intervals that were
close to the nominal level. Although these adjustments
generally improved the results for all examinedmodels in all
simulation conditions, they were less effective for models
with highly correlated variables (e.g., r > .60 or .70). On the
other hand, the performance of the adjustedmodels was not
affected by the chosen meta-analytic method, that is,
whether TSSEM (Cheung&Chan, 2005) or OSMASEM (Jak
&Cheung, 2020) was used or whether the correlations were
adjusted individually or using an artifact distribution.
These results demonstrate that measurement error has a

detrimental impact on MASEM results that can threaten the
validity of interpretations. Acknowledging fallible measure-
ments by using adjustments for attenuation improves point
and interval estimates and, thus, can help study true score
effects in MASEMs.

Limitations and Directions for Future Research
The presented findings provide ample opportunity for follow-
up research. For example, our simulations were limited to
MASEMs of specificmediationmodels because these address
popular multivariate hypotheses in psychological research.
Especially, with more complex interrelations among the
analysis variables (e.g., partial mediation, correlations be-
tween parallel mediators, sequential mediation with addi-
tional paths) or in more complex models (e.g., multivariable
SEMs), the consequences of measurement error can bemore
or less serious as bias amplifying and compensating

mechanisms can be present (e.g., Savalei, 2019; Sengewald&
Pohl, 2019). Therefore, it might be particularly helpful for
applied research to identify specific conditions under which
adjustments for attenuation are more or less useful. In this
respect, we encourage further research on analytic bias es-
timation (e.g., Savalei, 2019; Sengewald & Pohl, 2019), which
could give insights into different factors that affect biases in
different analysis models. This line of research could also be
extended to the analysis of moderating effects. So far, ad-
justments for unreliability in MASEMs focus on the pooled
correlations to estimate true score SEM parameters. How to
best incorporate potentially fallible moderators in these an-
alyses is, however, a currently still unresolved challenge.
Similarly, our analyses were limited to the impact of mea-
surement error on the SEM parameter estimates because
these are typically the primary focus in MASEM research.
Therefore, future research should explore inwhat way fallible
measurements might also affect model fit statistics such as
the chi-squared value or related goodness-of-fit indices. Fi-
nally, our research was limited to the effect of measurement
error in MASEMs. However, psychometric meta-analyses
emphasized several artifacts that might distort bivariate
meta-analytic estimates (Wiernik & Dahlke, 2020). There-
fore, follow-up research should evaluate how artifacts such as
range restriction or artificial dichotomization might also af-
fect MASEM results (e.g., De Jonge et al., 2020) and, more
importantly, develop respective adjustment techniques.

Conclusion
Measurement errors in study variables can distort point and
interval estimates of parameters in MASEMs. Although the
size of these biases depends on the specific characteristics of
the studied population model, the size of the unreliability,
and the studied parameter, MASEM results are generally
biased to some degree when measurement error is present.
Individual adjustments for attenuation or adjustments using
an artifact distribution allow recovering effect estimates in
TSSEMs and OSMASEM that often are largely unbiased
with confidence intervals close to the nominal level.
Therefore, we encourage applied meta-analysts to regularly
adopt adjustments for attenuation in MASEM research.
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Appendix A: Adjustments for
Measurement Error in OSMASEM

One-stageMASEM (Jak & Cheung, 2020) adopts the same
decomposition of the observed sample correlations ri as
TSSEM (see Equation 1). However, instead of fitting the
hypothesized structural model to the pooled correlations
bρ, OSMASM constrains the population correlations ρi in
Equation 1 to the correlations implied by the SEM as

ρi ¼ vechs
�
FðI� AÞ�1SðI� AÞ�1TFT�: (A1)

If the SEM includesmmanifest and l latent variables, I is
a m × l identity matrix, F is a m × (m + l ) selection matrix
distinguishing manifest from latent variables, A is a
(m + l) × (m + l) square matrix with asymmetric paths (e.g.,
regression weights, factor loadings), S is a (m + l) × (m + l)
symmetrical matrix with (co)variances, and vechs() re-
turns the lower diagonal elements of its arguments. The
model can be estimated using full maximum likelihood
with the metaSEM package (Cheung, 2015).
To estimate structural effects adjusted for measure-

ment error, the implied correlations in A1 need to be
attenuated using the average reliabilities across samples,
gi,x and gi,y, as

ρi ¼ vechs
�
FðI�AÞ�1SðI� AÞ�1TFT� �gi;xgi;y

�1=2
: (A2)

Consequently, the structural parameters given in A and
S represent unbiased estimates adjusted for measurement

error. Although not directly implemented inmetaSEM, the
respective functions can be easily adapted to accommo-
date this additional constraint. The respective code is
available in the online material.

Appendix B: Generation of Average
Population Correlations

The data-generating average population correlations were
calculated from the regression weights given in Table 1 as
P ¼ ðI�AÞSðI� AÞT . The size and values of the three
matrices I, A, and S depended on the simulated mediation
model (see Figure 1).

Simple Mediation

The three regression weights for the m = 3 variables (ηX,
ηM, ηY) referred to the effects of ηX on ηM (a), ηM on ηY (b),
and ηX on ηY (c). Therefore, I, A, and S were given as

I ¼

2
664
1 0 0
0 1 0
0 0 1

3
775; A ¼

2
664
0 0 0
a 0 0
c b 0

3
775; and

S ¼

2
664
1 0 0
0 1� a2 0
0 0 1� b2 � c2 � 2abc

3
775:
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Parallel Mediation

The five regression weights for them = 4 variables (ηX, ηM,
ηW , ηY) referred to the effects of ηX on ηM (aM), ηM on ηY
(bM), ηX on ηW (aW ), ηW on ηY (bW ), and ηX on ηY (c).
Therefore, I, A, and S were given as

I ¼

2
666664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
777775; A ¼

2
666664

0 0 0 0
aM 0 0 0
aW 0 0 0
c bM bW 0

3
777775; and

Sequential Mediation

The four regression weights for them = 4 variables (ηX, ηM,
ηW , ηY) referred to the effects of ηX on ηM (a), ηM on ηW (d),
ηW on ηY (b), and ηX on ηY (c), resulting in

I ¼

2
666664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
777775; A ¼

2
666664
0 0 0 0
a 0 0 0
0 d 0 0
c 0 b 0

3
777775; and

S ¼

2
666664
1 0 0 0
0 1� a2 0 0
0 0 1� d2 0
0 0 0 1� b2 � c2 � 2abcd

3
777775:

S ¼

2
666664

1 0 0 0

0 1� a2M 0 0

0 0 1� a2W 0

0 0 0 1� b2M�b2W � c2 � 2aMbMc� 2aWbWc� 2aMbMaWbW

3
777775:
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